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Introduction 

A few years ago, when microprocessors were first introduced, computer enthusiasts 
and electrical engineers were one and the same. Those of us who lived only to solder 
kluge after kluge basked in our glory. Now, however, the prices of completely assem¬ 
bled and packaged systems have plummeted. Today anyone with an interest, almost 
regardless of technical capabilities, can own and operate a computer. Buying a com¬ 
puter is now similar to purchasing a television set and the ranks of computer en¬ 
thusiasts have swelled accordingly. 

With any popular movement, the available literature reflects the concerns of a ma¬ 
jority of the followers. And, consistent with the popularization of computer science, 
the technical emphasis on computer bookshelves has shifted away from hardware 
design. Other than introductory texts called, say. How Logic Cates Work, most com¬ 
puter books either treat microcomputer hardware simplistically or attempt to be 
"catch-all" cookbooks, sometimes omitting tasty ingredients. Often, the only alter¬ 
natives are engineering texts and trade journals, tedious reading at best. 

For a number of years, I have been writing a column for BYTE magazine, and reader 
response has shown that there still exists a great deal of interest in hardware design and 
do-it-yourself projects. At the same time. I've been painfully aware of the lack of 
materials for such people. Most queries come from technical or high school students 
who have read all the descriptions and studied the block diagrams, but who crave prac¬ 
tical answers and system examples. Unfortunately, there are very few books I can sug¬ 
gest. 

Build Your Own Z80 Computer is a book written for technically minded individuals 
who are interested in knowing what is inside a microcomputer. It is for persons who, 
already possessing a basic understanding of electronics, want to build rather than pur*- 
chase a computer. It is not an introductory electronics handbook that starts by describ¬ 
ing logic gates nor on the other hand is it a text written only for engineering students. 
While serving to educate the curious, the objective of this book is to present a practical, 
step-by-step analysis of digital computer architecture, and the construction details of a 
complete and functional microcomputer. 

The computer to be constructed is called a Z80 Applications Processor—ZAP com¬ 
puter for short. It is based on the industry standard Zilog Z80 microprocessor chip. 
This chip was chosen on the basis of its availability and low cost, as were the other 
components for ZAP. To further help the homebrew enthusiast, and for those ex¬ 
perimenters who prefer to start a book at the back, I have listed in Appendix A a com¬ 
pany that supplies programmed EPROMs (erasable-programmable read-only 
memory). 

I have structured the book as a logical sequence of construction milestones in¬ 
terspersed by practical discussions on the theory of operation. My purpose is twofold: 
to help a potential builder gain confidence, and to make the material more palatable 
through concrete examples. 

Though this is basically a construction manual, considerable effort is given to the 
"why's" and "how's" of computer design. The reader is exposed to various subjects, in¬ 
cluding: the internal architectures of selected microprocessors, memory mapping, 
input/output interfacing, power supplies, peripheral communication, and program¬ 
ming. All discussions try to make the reader aware of each individual component's ef¬ 
fect on the total system. Even though I have documented the specific details of the ZAP 
computer, it is my intention (and the premise of the book) that the reader will be able 
to configure a custom computer. ZAP is an experimental tool that can be expanded to 
meet a variety of applications. 



ZAP is constructed as a series of subsystems that can be checked and exercised in¬ 
dependently. The first item to be built is the power supply. This is a good way to test 
ability and provide immediate positive reinforcement from successful construction. 
The three-voltage supply is both overvoltage and overtemperature protected and has 
adequate current for an expanded ZAP system. 

Next, the reader learns why the Z80 was chosen for ZAP and the architectural con¬ 
siderations that affect component selection on the other subsystems. A full chapter is 
devoted to the Z80 chip. Each control signal is explained in detail and each instruction 
is carefully documented. 

The hardware construction proceeds in stages with intermediate testing in order to 
ensure success. The basic elements of the computer are assembled first and then 
checked out. The reader selects which peripherals are to be added. The book contains 
sections on the construction of a hexadecimal display, keyboard, EPROM program¬ 
mer, RS-232C serial interface, cassette mass storage system, and fully functional CRT 
terminal. In addition, a chapter addresses interfacing the ZAP to analog signals. I pro¬ 
vide specific circuits that can convert ZAP into a digital speech synthesizer or a data ac¬ 
quisition system and data logger. 

A special 1 K (1024 bytes) software monitor coordinates the activities of the basic 
computer system and the peripherals. Software is explained through flow diagrams and 
annotated listings. With this monitor as an integral component, ZAP can function as a 
computer terminal, a dedicated controller, or a software development system. 

Build Your Own Z80 Computer is a book for hardware people. It cuts through the 
theoretical presentations on microcomputers and presents a real "How-to” analysis 
suitable for the reader with some electronics experience or for the novice who can call 
someone for supervision. From the power supply to the central processor, this book is 
written for people who want to understand what they build. 

Steve Ciarcia 
May 1981 
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CHAPTER 1 

POWER SUPPLY 

It's not enough to build a central processor card with a little input/output (I/O) and 
memory, and call it a computer. From the time you walk over to the computer and flip 
the switch, the system is completely dependent upon the proper operation of its power 
supply. A book concerned with building a computer system from scratch would be 
completely inadequate without a description of how to construct an appropriate power 
supply. 

Much has been written on the subject of direct current (DC) power supplies. There 
are DC to DC and AC (alternating current) to DC converters, switching and shunt 
regulators, constant voltage transformers, and so on. It's not my intention to make a 
power supply expert out of everyone. Instead, I will outline the design of the specific 
DC power supply which we will use to power the Z80 Applications Processor (ZAP). 

In large computers, the DC supplies convert enormous amounts of power to run 
thousands of logic chips; by necessity, manufacturers choose the most efficient 
methods of power conversion. These state of the art methods would be expensive and 
difficult for the hobbyist to build in prototype form. Fortunately, the power demands 
for ZAP are much less than those of the large computers; we can take advantage of 
established design methods while incorporating the latest advances in regulator 
technology. Figure 1.1 is a block diagram of the power supply for ZAP. 

Each of the three DC supplies necessary to power ZAP consists of three basic 
modules: a transformer section to reduce the 120 VAC line voltage to the lower voltage 
used by the computer; an input rectifier/filter to convert AC to low ripple DC; and a 
regulator which stabilizes the output at a fixed voltage level. Overvoltage protection 
circuitry will be discussed separately. 

1 AMP 3 AMP 

♦ 3 VOLTS 
(o) SAMPS 

CIRCUIT CNO 

♦ 12 VOLTS 
<a> 1 AMP 

-12 VOLTS 

@ 1 AMP 

Figure 1.1 A block diagram of the basic power supply for the Z80 Applications Processor (ZAP). 
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The proper specification of the transformer and input filter is often neglected by hob¬ 
byists who overlook the consequences of a poorly designed filter. This is caused, in 
part, by the abundant technical information circulated by semiconductor manufac¬ 
turers extolling the virtues of their regulator circuits. One can easily conclude from this 
"publicity gap" that the regulation section of the power supply is the only component 
worthy of consideration; and in fact, advances in regulator design and the advent of 
high-power, three-terminal regulators have reduced the need for the analog designer in 
the application. In the past, 25-odd components and considerable calculations were 
necessary to produce an adequate voltage regulator. Now, however, the majority of 
applications can be accommodated with a single, compact device. Even so, an input 
filter section should not be taken lightly and still requires thorough consideration and a 
modest amount of computation for each application. 

There are three supply voltages necessary to operate ZAP. Each supply incorporates 
an input filter section. Because the +5 V supply is the most important, it receives the 
most attention. For the purposes of this discussion, we will divide the supply into two 
sections: transformer/input filter, and output regulator. 

A standard input filter block diagram is shown in figure 1.2. In its simplest form, it 
consists of three components that function as follows: 
• A transformer that isolates the supply from the power line and reduces the 120 VAC 

input to usable, low-voltage AC. 
• A bridge rectifier that converts AC to full-wave DC and satisfies the charging cur¬ 

rent demands of the filter capacitor. 
• A filter capacitor that maintains a sufficient level between charging cycles to satisfy 

the regulator input voltage limitations. 

; f 

f5- 

>/VVWv 

Photo 1.1 120 VAC RMS 
input/output waveform of a 
saturated transformer. 

Photo 1.2 Rectifier waveform. Photo 1.3 Ripple waveform at 
various loads. 

TRANSFORMER RECTIFIER CAPACITOR FILTER 

DC OUTPUT 
TO REGULATOR 

PRIMARY INPUT VOLTAGE SURGE CURRENT 
SECONDARY OUTPUT VOLTAGE CAPABILITY 
CONTINUOUS CURRENT OUTPUT VOLTAGE DROP 
SECONDARY IMPEDANCE CONTINUOUS CURRENT 

RATING 

SURGE CURRENT RATING 
VOLTAGE RATING 
RIPPLE voltage 

Figure 1.2 A block diagram of a standard input filter. 
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DESIGNING AN INPUT FILTER 
You would think that specifying the transformer would be the first consideration 

when designing a power supply. Yes and no. The approximate output voltage can be 
determined by rule of thumb, but the exact requirements are deduced only by a 
thorough analysis that proceeds from the desired output voltage back. In practice, the 
difference between a reasonable guess and a laborious analysis will be important only 
to a person capable of manufacturing his own transformer. In most instances, the hob¬ 
byist will have to rely upon readily acquired transformers with standard output 
voltages. For this reason, my approach is predicated on the practical aspects of power 
supply design rather than on the minute engineering details that have no real bearing 
on the outcome. 

A 120 VAC RMS (root mean square) sine wave is applied to the primary of the 
transformer. Figure 1.2 illustrates the waveforms anticipated at selected points through 
the filter section. Photo 1.1 shows that 120 VAC is actually 340 V peak to peak; care 
should be used in the insulation and mounting of components. 

The secondary output of the transformer will be a similar sine wave, reduced in 
voltage. It is then applied to a full-wave bridge and the waveform will appear as in 
photo 1.2. You'll notice a slight flat spot between "humps." As a result of dealing with 
actual electronic components rather than mathematical models, we should be aware of 
certain peculiarities. Silicon diodes exhibit threshold characteristics and, in fact, have a 
voltage drop of approximately 1 V across each diode. This voltage drop becomes 
significant in full-wave bridge designs and, as figures 1.3a, 1.3b, and photo 1.2 il¬ 
lustrate, can accumulate as diodes are added in series. The 2 V loss in the bridge is an 
important consideration and should be reflected in the calculations. 

The voltage regulator requires a certain minimum DC level to maintain a constant 
output voltage. Should the applied voltage dip below this point, output stability is 

Figure 1.3 The direction of the current flow through the full-wave bridge. 
a) During the positive half of the AC cycle, current flov/ is through D, and 03; D2 and 04 

are not conducting. VDl + VD3 ~ 2 volts. 
b) During the negative half of the AC cycle, current flow is through D, and D4; D, and D, 

are not conducting. VD2 + Vo* »* 2 volts. 

POWER SUPPLY 3 

Copyrighted material 



severely degraded. Thus, a filter capacitor is used to smooth out the "humps" in the 
rectified sine wave. When the diodes are conducting, the capacitor stores enough charge 
to maintain the minimum voltage required until the next charge cycle. (In practice, we 
wouldn't want to cut it that close.) The input to the transformer is 60 Hz, but because 
of the characteristics of full-wave rectification, the charging cycles occur at 120 Hz. 
The capacitor charges up during one 8.3 ms cycle, and, as the regulator draws power 
from it to satisfy the load demands, it must continue to provide at least the highest 
minimum input voltage required by the regulator until the next charge cycle, 8.3 ms 
later. This periodic charge/discharge phenomenon is shown in photo 1.3. The 
magnitude of the voltage fluctuation between the two peaks of the cycle is referred to 
as ripple. The highest magnitude of the waveform including the ripple is designated as 
peak voltage. Both are important to remember and are shown in figure 1.4. 

vFEAKrVR|PPLE4’VC 

Figure 1.4 Output voltage as a combination of a certain steady-state voltage (Vc) plus a ripple voltage 
(Vumm)- 

Given a basic understanding of the individual components at this stage, we can pro¬ 
ceed to the case at hand: a 5 V, 5 A power supply. For reasons we'll discuss later, the 
5 V regulator section of this supply will require an absolute minimum of 8.5 V for 
proper operation. This means that whatever the magnitude of VPEAK and V ripple, the 
final Vc level must not go below 8.5 V, or the regulator will not work. By giving 
ourselves some leeway, say Vc — 10 V, we can take a little more poetic license with 
the calculations and still produce a good design. Going much above 10 V, while still 
satisfying the input criteria, would increase power dissipation and possibly destroy the 
regulator. There is an answer to this vicious circle and that's to be conservative. Ex¬ 
perience shows that adding a little insurance is worthwhile. 

Now that 10 V is the goal, we can appropriately select the other filter components to 
meet it. Figure 1.5 is the filter circuit of our 5 V supply. Rs is the resistance of the sec¬ 
ondary winding of the transformer. For a 5 to 8 A transformer, it will average aboutx 
0.1 ohms. The first values to recognize follow: 

Vc — VREGULATOR MINIMUM INPUT VOLTAGE — 10 V 
I out = Ireculator LOAD = 5 A 

Rj = ^TRANSFORMER SECONDARY RESISTANCE = 0.1 ohmS 

Vpeak can be any voltage up to the maximum input for which the regulator is rated. 
However, this will increase the circuit power dissipation. The rule of thumb I use when 
designing supplies of this type is that VPEAK should be approximately 25% higher than 
Vc. In this way, the capacitor value will be kept within reasonable limits. The ratio of 
Vc to (Speak “ Vc) is referred to as the ripple factor of the filter capacitor. 

25% 

A ripple factor of 25% at 5 A will fall well within the acceptable capacitor ripple cur¬ 
rent ratings and eliminate the need for the hobbyist to dig into manufacturers' specifi¬ 
cations of capacitors. This ripple factor is arbitrary, but it is best to keep it as low as 
possible. 
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Figure 1.5 The input filter circuit of the 5 V power supply. 

SIZING THE CAPACITOR 

We now know that the capacitor must sustain 10 V from a peak input of 12.5 V. 

V«*r 

Vc 

VRIPPLE 

12.5 V 

10 V 

2.5 V 

Vc “ VPC A K V ftIPPLC 

The next consideration is to choose a capacitor that will accomplish this goal. Another 
rule of thumb calculation that saves considerable labor is 

I 

where C = capacitor value in farads = 7 

I = maximum regulator current = 5 A 

dt = charging time of capacitor ■» 8.3 ms (120 Hz) 

dv = allowable ripple voltage = 2.5 V 

Plugging in the values of our circuit, 

r _ (5)(8.3 X10°) 
(2.5) 

16.6X10"’ farads 

C = 16,600 microfarads (/iF) 

Generally available commercial electrolytic capacitors have a tolerance of +50 and 
—20%. To be on the safe side and to make it easier to find a standard stock compo¬ 
nent, a value of 20,000 /iF is better. The added 3,400 n? reduces the ripple by another 
0.4 V and gives us a little "insurance/' The only other item to consider with the capaci¬ 
tor is operating voltage. Because the design dictates that Vtcak is 12.5 V, this should 
be a satisfactory rating. However, experience shows that transformers end up running 
at higher output voltages than labeled and that 12.5 V at 115 VAC hits 13.6 V when 
the line voltage goes up to 125 VAC. A capacitor voltage of 15 VDC would appear to 
satisfy the requirement, but I recommend using the next increased standard value of 
20 VDC. 

The capacitor is therefore 20,000 /*F at 20 VDC. The rectifier can be a monolithic 
hill-wave bridge, or it can be four discrete diodes. Note that because a bridge is usual¬ 
ly encapsulated, the four terminals are labeled instead of showing the polarity mark¬ 
ings of the individual diodes. The designations for the four terminals are two AC input 
terminals, and a + and — output terminal. 
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THE RECTIFIER 

There are three considerations when choosing a rectifier: surge current rating, con¬ 

tinuous current, and PIV (peak inverse voltage) rating. These choices are not inconse¬ 
quential and must be considered carefully. 

When a power supply is first turned on, the capacitor is totally discharged. In fact, it 
will instantaneously appear to be a 0 ohm impedance to the voltage source. The only 
aspect of the circuit that limits the initial current flow is the resistance of the secondary 
transformer windings and the connecting wiring; designers often add a series resistance 
to limit surge current. 

The surge current in this circuit is 

URGE 

Vrr.AK _ 12.5 
Ks " 0.1 

125 A 

and the time constant of the capacitor is 

T = Rj X C = (0.1X20X10°) “2 ms 

As a rule of thumb, the surge current will cause no damage to the diode if I$(/*Ce is less 
than the surge current rating of the diode and if 

/ 
7 < 8.3 ms (which it is) 

We can't check surge rating until after we choose a diode bridge, but the other two 
parameters can be defined. 

The bridge can be either of the following: 

Motorola MDA 980-2: Ico/vr = 12 A, \svrge * 300 A, PIV = 100 V 
Motorola MDA 990-2: Icwr - 27 A, IWHG£ = 300 A, PIV = 100 V 

Both of the above bridges have a surge current rating of 300 A, so our surge require 

ment is also satisfied. 

PIV 
PIV (peak inverse voltage) is the maximum voltage that may appear across the diode 

before it self-destructs. Diodes, unlike capacitors, are unforgiving; transients will wipe 
them out. It is not unusual to have 400 V transients on the 115 VAC input line. This 
causes our 12.5 V to shoot up momentarily to 43 V! The bridge rectifier should there¬ 
fore have a minimum PIV rating of 50 V. For a few pennies more, you can get a bridge 
rated for 100 PIV. Remember, insurance costs less than computers. 

CONTINUOUS CURRENT 
The last consideration is continuous current rating. Whereas the regulator may be 

designed for a 5 A output, the particular regulator I have chosen will draw 7 A if 

shorted. This is not standard operating procedure, but it can happen. The suggested 
standard component would be a 12 A, 50 PIV bridge. A preferred component would be 
one rated for 12 A at 100 PIV or, for an additional 15% cost premium, a 27 A at 100 
PIV. This last design choice is strictly brute force, but it saves the diode bridge should 
the capacitor ever short-out accidentally. A 6 A transformer might put out more than 
12 A in a short-circuit mode, but it's unlikely that it would be capable of 27 A. Either 
choice will satisfy the design, but only one saves the design from the builder. 

THE TRANSFORMER 
Now let's consider the transformer. We have determined the voltage drops across the 

various components. The values are used to calculate the required RMS (root mean 
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square) secondary voltage in the following way: 

\T _ ^c Cripple + vRCCT 
VSECiRMS) — VrECT 

= 10 + 2.5 + 2.0 
1.414 

Voltage drop across each diode— 
(approximately 1 V per diode) 

= 10.25 V 

In practice, a 10 V, 6 A standard value transformer will be close enough. 
The components of the + and —12 V supplies are chosen in a similar manner, with 

the exception that required current is only 1 A, and a 200 PIV bridge is recommended 
because of the particular rectifier configuration. The finished schematic of the trans¬ 
former and filter section of our computer is illustrated in figure 1.6. 

MDA990-2 

VC • 10 VOLTS 

VRIPPLE *2 3VOLTS 

°GROUND 

VC • 15 VOLTS 

VRIPPLE* 4 VOLTS 

VC*-15V0LTS 
VRIPPLE '-4V0LTS 

Figure 1.6 A schematic diagram of a transformer and input filter section. 

VOLTAGE REGULATORS 

The voltage regulator section of our power supply is the next consideration. All 
voltage regulators perform the same task: they convert a given DC input voltage into a 
specific, stable DC output voltage and maintain this setpoint over wide variations of 
input voltage and Output load. The typical voltage regulator, as shown in figure 1.7, 
consists of the following: 

• a reference element that provides a known stable reference voltage 

• a voltage translation element that samples the output voltage level 

• a comparator element that compares the reference and output level to produce an 

error signal 

• a control element that can utilize this error signal to provide translation of the input 
voltage to produce the desired output 

The control element depends on the design of the regulator and varies widely. The 
control determines the classification of the voltage regulator: series, shunt, or switch- 
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ing. For the series regulator, the control element regulates the output voltage by 
modulating the series element, usually a transistor, and causes it to act as a variable 
resistor (figure 1.8). As the input voltage increases, the series resistance Rs also in¬ 
creases, causing a larger voltage drop across it. In this way, the output voltage (Vovr) is 

maintained at a constant level. 

REGULATED 
OUTPUT 
VOLTAGE 

Figure 1.7 A block diagram of a typical voltage regulator. 

IN* 

r 
^y<£ 

"S 

I LOAD 

I LOAD 

VOUT vOUT 

VOUT * VIN-(l«s)(,LOAo0 vOUT « VIN -VC£ 

WHERE VcE . (IlOAO) Rs 

Figure 1.8 A series control element in the voltage regulator. 
a) The series control element acts as a variable resistance, Rs. 
b) The series element is most often a transistor. 

To accomplish this closed-loop control, a reference comparison and feedback system 
is incorporated into the hardware. A fixed and stabilized reference voltage is easily pro¬ 
duced by a zener diode. The current produced is low, however; the device could not 
serve as a power regulator by itself. 

The voltage translator connected to the output of the series control element produces 
a feedback signal that is proportional to the output voltage. In its simplest form, the 
voltage translator is a resistor-divider network. The two signals, reference and feed¬ 
back, provide the necessary information to the voltage comparator for closed loop 
feedback to occur (figure 1.9). The output of the comparator effectively drives the base 

of the series pass transistor so that the voltage drop across the transistor will be main¬ 
tained at a stabilized preset value when subtracted from the input voltage. 

Modem power supply designers can still use individual components to construct the 
modular elements of a series voltage regulator, but most reserve this laborious 
endeavor for specialized applications. The ZAP computer system outlined here re¬ 
quires +5 V, +12 V, and —12 V. The combined temperature, stability, and drift 
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tolerances cannot exceeu ±5% on any of the three set points. The easiest way to 
minimize risk is to reduce the number of circuit components to the bare minimum. 
Other designers had the same idea and thus the three-terminal regulator was invented. 
Figure 1.10 is the block diagram of such a device. 

VQUT •!♦( ^)<VR£F> 

VOUT *V|N-VCE 
AND 

VCE 'IlOAOCRsI 

v0UT * VIN “(iLOAO IRS*) 

THIS IF TOO THINK OF IT AS A TRANSISTOR 

THIS IF YOU THINK OF IT AS A SERIES 
RESISTANCE 

Figure 1.9 A schematic diagram of a series voltage regulator. 

GR0UN0 

Figure 1.10 A block diagram of a three-terminal voltage regulator. 

Basically, a three-terminal regulator incorporates all the individual transistors, 
resistors, and diodes into a single integrated circuit. While simple to use, these devices 
have a far more complicated internal structure than the series regulator of figure 1.9. 
Only three terminals are necessary in applications where the fixed output is a standard 
value such as: ±5 V, ±6 V, ±8 V, ±12 V, ±15 V or ±24 V. The three connections 
are unregulated DC from our input filter, a ground reference, and finally, regulated DC 
output. 
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In a three-terminal regulator, the voltage reference is the most important part 
because any abnormality or perturbation will be reflected in the output. Therefore, the 
reference must be stable and free from noise or drift. More advanced designs use band- 

gap reference circuits rather than zener diodes. Because of its complexity, such an ap¬ 
proach is practical only in the integrated circuit (IC) environment. Essentially, a band- 

gap reference voltage is derived from the predictable temperature, current, and voltage 
relationships of a transistor base-emitter junction. 

Another advantage of the three-terminal regulator is that in monolithic circuits, 
stable current sources can easily be realized by taking advantage of the good matching 
and tracking capability of monolithic components. Also, as in the previous case, the 
designer can add as many active devices as necessary without significantly increasing 
the IC circuit area. Operation of the reference circuit at a constant current level reduces 
fluctuations due to line-voltage variation. Thus, the output has increased stability. The 
error amplifier is also operated at a constant current to reduce line-voltage influence. 

The most important consideration for the hobbyist is that these chips incorporate 
protective circuitry, guarding the regulator from certain types of overloads. They pro¬ 
tect the regulator against short-circuit conditions (current limit); excessive input/out¬ 

put differential condition (safe operating area); and excessive junction temperatures 

(thermal limit). Of course, all this circuitry is designed to protect the regulator, not the 
computer. 

CHOOSING A REGULATOR 
The 5 A /*A78H05 hybrid voltage regulator has all the inherent characteristics of the 

monolithic three-terminal regulator (ie: full protective circuitry). Each hermetically- 
sealed TO-3 package contains a /iA78M05 monolithic regulator chip driving a discrete 
series-pass transistor Ql and two short-circuit-detection transistors Q2 and Q3 (see 
figure 1.11). The pass transistor is mounted on the same beryllium oxide substrate as 
the regulator chip, thus insuring nearly ideal thermal transfer between Ql and the tem¬ 
perature-sensing circuit of the 78M05. 
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ELECTRICAL CHARACTERISTICS: Tj • 25°C. IquT " 2 0 A unlett ottiervro* specified. 

CONDITIONS 
PA78M05C 

1 liJfTC UnAtmL I tnlillUi 
MtN TVP MAX 

UNITS 

Output Vo*t*g* •OUT - 2O A. V,M * tOV 4 6 SO 5.2 V 

Regulation V,* » 8 5 lo 25 V 10 50 mV 

lo*d ReQul#t«oo 10 mA < «qut < 5.0 A V|N = 10 V 10 SO mV 

Qv*ictrnt Cuff*nt •OUT *■ 0. V|* - VouT ♦ 5 0 V 10 mA 

R-C©v Reaction •OUT 1 -O A. f « 210 Hi. 5 0 V P-P 60 08 

Output Noivo 10 H/ < 1« TOO kHl. V|N • Vour ♦ 5 0 V 40 PVrMS 

Dfopoul Voft«0* 
•O* 50A 30 V 

•O* 30A 26 V 

S*>o«l Circuit Currcni Lim* V,n -10 V 70 

Figure 1.12 Electrical characteristics of the nA78H05 voltage regulator. 

The output circuit is designed so that the worst-case current requirement of the Ql 

base, added to the current through R2, always remains below the current-limit thresh¬ 
old of the 78M05. Resistor Rl, in conjunction with Q2 and Q3, makes up a current 
sense and limit circuit to protect the series-pass device from excessive current drain. 

Safe area protection is achieved by brute force and is designed with the hobbyist in 
mind. The series-pass transistor is capable of handling the short-circuit current at the 
maximum input voltage rating of the 78H05. (See figure 1.12 for the electrical charac¬ 

teristics of the 78H05.) 
The output of the device is nominally 5.0 V but can vary between 4.8 and 5.2 V. Even 

though this falls within the 5.0 V ±15% tolerance necessary to run the computer, there 
might be a problem with the voltage drop in the cabling between the power supply and 
the computer. Up to 0.5 V could be lost in the wiring and connectors. Remember that 
at 5 A, a resistance of only 0.1 ohms can cause a 0.5 V drop. Unfortunately, the 78H05 
is a fixed-output device when referenced to ground. If 4.8 V happens to come out, 
"that's all you gets" (sic). But, in a classic case of engineering razzle-dazzle, we can fool 
the regulator by making the ground reference adjustable. Figure 1.13 shows the circuit 
that makes this possible. A potentiometer sourced from the —12 V supply creates a 
relative-ground reference for the 78H05. If the particular device in question had an out¬ 
put of 4.95 V, and we adjusted Rl for a potential of 0.20 V on the common regulator 
pin, the output referenced to ground would change to 4.95 + 0.20, or 5.15 V. For the 
fanatics in the crowd, this particular circuit also allows a high-output device to be 
reduced to 5.00 V by selecting an appropriate negative voltage ground reference pin. 

vINPl>T °- 
10V 

OND°- 

IX OUT 

33 V 
SOLID 
TANTALUM 

p A78H03KC 

COMMON 

: 

\?oci 
-wv 

Rl 

^OUTPUT 
♦SVt3% 

10j» F 
10 V 

/N 
FROM 12V 
REGULATED OUTPUT 

Figure 1.13 Adding "trim adjust" to the nA78H05 three-terminal voltage regulator. 
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With the 5 V supply complete, our next concern is the +12 V and —12 V supplies. 
Other devices within the 7800 family of regulators will satisfy the requirements. The 
7812 and a 7912 are 1 A positive and negative regulators respectively; they exhibit the 
same protection characteristics as the 78H05. Figures 1.14 and 1.15 outline the exact 
specifications. Because we are dealing with much lower currents than the +5 V supply, 
there is considerably less concern over voltage losses through connecting cables, and it 
is unnecessary to add trim adjustment circuitry. Figure 1.16 is the finished schematic of 
the ZAP power supply. Additional regulator circuit diagrams (figures 1.17a, b, c and 
d) are included to demonstrate how the 7800 series of regulators can be used in our ap¬ 
plication. Are we finished yet? Of course not. Close examination of figure 1.16 shows 
two items not discussed previously: heat sinks and overvoltage protection. These two 
subjects and a short discussion of the importance of correct layout complete the 

chapter. 

jiA7812 
ELECTRICAL CHARACTERISTICS: V,N - 19 V. Iqut - 500 mA. -55* C < Tj < 1S0*C. C|N • 043 *F. CouT * 0.1 . 

unltSI other**** fpttlf’td. 

CHARACTERISTICS CONDITIONS MIN TYR MAX UNITS 

Output Voltage Tj * 25*C ii4 120 12.5 V 

Line Regulation Tj - 25*C 
145V <V)N< 30V 10 120 mV 

16 V < V|N<22V 30 60 mV 

Load Regulation Tj - 25* C 
5mA< *OUT < I SA 12 120 mV 

250 mA < loot < 750 mA 40 60 mV 

Output Voltage 

15.5 V < V|n < 27 V 

5 mA < l0UT < 1 JO A 

K 15 W 

114 124 V 

Ou*ic«nt Current Tj - 25*C 43 60 mA 

Orescent Current Ch***?* 
with i»rte 15 V« V|W <30 V OS mA 

with load 5 mA < touT < 10 A 0.5 mA 

Output None Vo'tege TA-75*C. 10M*<I< 100 hHi 8 40 uWVouT 
R'po't Rejection »-120HM5V<V,N<25V 61 71 dB 

Dropout VoJt*9* •OUT- 1.0 A. Tj * 25*C 20 2.8 V 

Output Renstence f • 1 kMt 18 mfl 

Short Circuit Current Tj • 25*C. V,N - 35 V 0.75 14 A 

Reek Output Currant Tj - 25*C 1.3 22 3-3 A 

Average Temperature Coefficient of Output V of tape 'OUT -5 mA 
-55*C < Tj < *25* C 0.4 mWC/ 

vqut ♦25*C<Tj<4l50rC 0.3 

Figure 1.14 Electrical characteristics of the nA7812 voltage regulator. 

MA7912 

ELECTRICAL CHARACTERISTICS: V,N • -19 V. I0UT • "A. C,M • 2t.f.CouT • 1**. -S5*C < T j < 150*C. «IM OttwerfM 

Ipeof.ed, 

CHARACTERISTICS CONDITIONS MIN TVR MAX UNITS 

Output Voltage Tj - 2S*C -11 5 -12 0 -12.6 V 

Tj • 25*C 
—14.5 V < V|ej < —30 V 10 120 mV 

-16 V< VlN<-22 V 30 60 mV 

toed Reputation Tj - 25*C 
6mA<l0UT< 1A A 12 120 mV 

750 mA < l0uT < 750 mA 40 60 mV 

Output Voltage 

-155V<VtN<-27V 

5 mA < tom < 1.0 A 

p< 15W 

-114 -12.6 V 

Ou<e«cent Current Tj ■ 25* C 1.5 3.0 mA 

- . _ w»th line -15V«Vin<-30V 1 JO mA 

with toed 6 mA < IquT < 1 0 A 05 mA 

Output None Vottege TA • 25*C. 10 He < 1 < 100 kHe 25 80 av/v0uT 

Ripple Rejection « - 120 He. -15 V < Vim < -25 V 54 60 d8 

Dropout Vottege •OUT * 1.0 A, Tj » 25*C i.i 24 V 

Nek Output Current Tj • 25*C 14 2.1 3.3 A 

Amrege Temper at ixe Coefficient of 
Output Vottege 

lOUT « 5 mA. -55*C < Tj < 160*C 03 mV/*C/ 
v0UT 

Short Circuit Current V,N--35V.Tj-2S*C 14 A 

Figure 1.15 Electrical characteristics of the nA7912 voltage regulator. 
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MDA990-2 

* THE ruS£ IS ATTACHED TO THE REGULATOR IM*UT ANO OCTaEEN THE FILTER CAPACITOR AMO 
OIOOC 8RIOCC 

Figure 1.16 A schematic diagram of the finished power supply for the ZAP computer. 

2N4396 

VBEI2N6124) 

RSC 

Figure 1.17 Additional voltage regulator circuit 
diagrams to demonstrate how the 7800 series of 
regulators can be used. 

a) A high-current voltage regulator us¬ 
ing a 500 mA 7QM05 three-terminal 
regulator. 

b) A high-current short-circuit pro¬ 
tected voltage regulator, an en¬ 
hanced version of figure 1.17a. 

c) Using a 7805 + 5 V voltage reg¬ 
ulator to produce a higher output 
voltage. 

d) A dual ±12 V tracking voltage reg¬ 
ulator. 
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LAYOUT IS IMPORTANT 
Integrated circuit regulators employ wide-band transistors in their construction to 

optimize response. As a result, they must be properly compensated to ensure stable 
closed-loop operation. Their compensation can be upset by stray capacitance and line 
inductance of an improper layout. Circuit lead lengths should be held to a minimum, 
and external bypass capacitors in particular should be located as close as possible to the 
regulator control circuit. 

Figure 1.18a illustrates a typical layout of the components of our supply, and figure 
1.18b details the areas that can cause problems. Improper placement of the input ca¬ 
pacitor can induce unwanted ripple on the output voltage. This occurs when the current 
flowing in the input circuit influences the common ground line of the regulator. The 
voltage drop produced across R2' will cause the output of the regulator to fluctuate in 
the same manner as the voltage trim circuit we discussed previously. The peak currents 
in the input circuit (which consists of the rectifier and filter capacitor) can be tens of 

amperes during charge cycles. These high-current spikes can cause substantial voltage 
drops on long-lead lengths or thin-wire connections. They can also degrade perfor¬ 
mance to the point that proper input voltage to the regulator cannot be maintained ex¬ 
cept during low-current operation. 

The output current loop is also susceptible to circuit layout. In a three-terminal 
regulator, the fixed-output voltage Vout(keg) is referenced between "out" and "com¬ 
mon" of the chip. Because the load current flows through R2', R3', and R4', as well as 
the load itself, these combined voltage losses may reduce Vout to an intolerable level. 
Notice that the ground for this circuit is at point C while the present R load is between 
points A and B. If another load, more memory for example, is connected to this supply 

between points A and C, it would have a different Votrr. Adjusting the trim setting of 
such a seesaw supply can be dangerous; it's possible to have one load completely 
within tolerance and another over or under voltage. One last point to consider is that 
R4' serves to negate the purpose of the regulator because it continually reduces Vout as 
the load current increases. 

TRANSFORMER RECTIFIER REGULATOR 

Figure 1.18 A typical layout of the power supply components and associated problems. 
a) A typical layout. 
b) Errors contributed by the layout in figure 1.16a. 
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Figure 1.19 is the block diagram of a proper layout. All high-current paths should 

use heavy wire to minimize resistance and resultant voltage drops. You'll notice now 
that the input and output circuit current paths are separated effectively. Note that the 

wires from the rectifier go directly to the capacitor and that two wires from the capaci¬ 
tor send power to the rest of the circuit. If you follow this convention and use two 
separate pairs of leads, you can eliminate input-circuit induced errors. 

Finally, we need to discuss the concept of the single-point ground. One point in the 
power supply must be designated as ground; the grounds of all other supplies and loads 
are connected to it. In practical terms, the best way to implement this ground connec¬ 
tion is to use a metal strip or several lengths of heavy wire soldered together. The strip 
is a ground bus with such a low resistance that a voltage measured between point A 
and any place along the bus will be virtually undetectable. Another +5 V bus should 
be connected to the output of the supply so that voltage distribution throughout the 
circuit is consistent. Use thick wire in power supplies. Even if zero-resistance wire isn't 

easily obtainable, always remember—there is no such thing as wire that is too thick! 

TRANSFORMER RECTIFIER REGULATOR 

Figure 1.19 A block diagram of a proper layout for the pov/er supply components. 

THERMAL CONSIDERATIONS 
You've just built the power supply I've outlined, flipped on the power, and every¬ 

thing works. After a few minutes, something happens and the computer suddenly stops 
running. Naturally, you start looking around and touching things. Eventually, your 
fingers will end up on the regulator chip. Immediately you scream, jump back, and in 
the process knock over the computer and your celebration martini. If you are lucky, 
your fingers will be the only thing burned! 

When not properly cooled, the regulators will protect themselves from destruction 
by reducing their output or completely shutting off. In this case, the system could cease 
to function. A more catastrophic problem arises from ICs that use all three voltages for 
normal operation. Loss of one or more of these voltages could permanently damage the 
device. This will never happen if power dissipation is limited and the proper cooling 
methods are employed. 

The first step is to check the power dissipation of our design with the ratings of the 
particular devices. In practical terms, power, expressed in watts, is volts times 

amperes: 

PD = E X I 

In our 5 V regulator we have Vc — 10 V and VPEAK = 12.5 V at 5 A. 
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D{KOM) 

D{PEAK) 

D(AVERAGE) 

(Vc — Voin-) X 5 A 

(10 - 5) X 5 

25 W 

(Vpeak Votrr) X 5 A 

(12.5-5) X 5 

37.5 W 

37.5 ± 25 
2 

31.25 W 

This means that under full load conditions, about 30 W of heat will be produced by the 
78H05. The device is fortunately rated for 50 W at 25 °C and is still capable of handling 

30 W up to 75 °C. 
Although the internal power dissipation is limited, the junction temperature must be 

kept below the maximum specified temperature (125 °C) in order for the device to func¬ 
tion at all. To calculate the heat sink required, there are specific equations to solve. 

The required thermal data and calculations follow: 

DlMAX) 

Typical 0JC — 2.0 
Typical 0JA = 32 

Tj(MAX) Ta 

Ojc + 6 CA 

Maximum 0JC 
Maximum 0JA 

2.5 
38 

for 0, CA Ocs + 0 SA 

Solving for Ty. 

Ty — T* + Pd(0jc “b Oca) 

or without a heat sink. 

D{MAX) 
JIM AX) - T 

0. JA 

Ty = TA “b P dOja 

where Ty = junction temperature 
ambient temperature 
power dissipation 
junction to case thermal resistance 
junction to ambient thermal resistance 
case to ambient thermal resistance 
case to heat sink thermal resistance 
heat sink to ambient thermal resistance 

125 °C - 25 °C 
31.25 W 3.2°C/W 

Because $JA as calculated is less than $JA from the specification sheet, a heat sink is 
definitely required, and a TO-3 type heat sink of 3.2°C/W is the minimum desired. 

Before you size a heat sink for the 78H05, realize that there are two more regulators 
and two bridge rectifiers that will need heat sinking. Each 12 V regulator will average 
about 5 W dissipation. The diode bridge associated with the + 5 V supply (remember 
the 2 V drop) dissipates about 10 W while the other is good for 2 W. Therefore, any 
heat sinks in the power supply must handle more than 50 W. 

4 

WHAT IS THE PRACTICAL METHOD FOR CHOOSING HEAT SINKS? 
Choosing a heat sink can be easy or hard depending upon your outlook on rule of 
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thumb measures. We already know that we need a 50 W heat sink. It's easy to assume 
that buying one "rated for 50 W" from a local electronics supply will solve the prob¬ 
lem. What this rating usually means, however, is that if 50 W is applied through a tran¬ 
sistor to this sink, and the ambient temperature is 25 °C, the surface temperature of the 

sink will climb to 100 °C. Fried eggs anyone? 
We must not forget that manufacturers' specs always refer to limiting maximum 

junction temperature, not to keeping the case cool enough to touch. Personally, I hate 
red-hot power supplies. To get a heat sink that would take our 50 W and stay about 
60-70 °C would probably mean getting one rated for 200-300 W! Remember that heat 
sinks are expensive—-and big. 

The simplest solution is best. I prefer forced air cooling. Put the 50 W on an 
economical heat sink of, say, a 100 W rating and put your money into a good fan. You 
can still run through all the calculations and determine how many square inches you 
need, but the effect of blowing a little air ov^r a heat sink multiplies its capabilities 

enormously. 

OVERVOLTAGE PROTECTION 
The final area to be addressed in the power supply is overvoltage protection. As 

designed by manufacturers, regulators protect themselves by reducing output voltage 
or complete shutoff. The chances of computer component damage from low voltage is 
miniscule by comparison to overvoltage. It is unlikely to happen, but if the 78H05 were 

to accidentally short out, as much as 12.5 V would be applied to the +5 V bus. You 
could then kiss the computer good-bye I 

_+ 5 volt OVP_ _12 volt OVP_ 
D, 5.6V 1N4734 D, 13V 1N4743 
SCR, 50V 25A 2N682 SCR, 50V 8A 2N4441 
Fuse 6amp fast-blow Fuse l.Samp fast-blow 

The semiconductor components of this 
12 volt OVP are reversed in polarity 
for the —12 volt OVP. 

OVP 

REGULATOR 
OUTPUT 

TO 
COMPUTER 
BUS 

Figure 1.20 A simple overvoltage protection circuit. 

The circuit of figure 1.20 is a simple OVP (over-voltage protector). It can be used as 
shown on the 5 V and 12 V supplies. The appropriate components are listed in the 
tables of figure 1.20. You'll notice that the fuses are rated higher than the output we've 
previously discussed. The fuse is for the OVP and not to protect the regulators. Unfor¬ 
tunately, the nature of fast-blow fuses is not to pass 5 A, if it is a 5 A fuse, but to open 
at 5 A. The fuse must have a higher rating in order to allow circuit operation at 5 A. 



Figure 1.21 A schematic diagram of a more complex overvoltage protection circuit. The crowbar sec¬ 
tion of the OVP can be located next to the fuse while the OVP sensor Z, is located at the regulator out¬ 
put. This is a preferred placement of the parts if the sensor and clamp can be adequately separated. 
Low-current sensor Z, fires SC/?, in an overvoltage condition. SCRt in turn fires high-current SCR* The 
combination of SCRs allows considerable leeway in the choice of SCR2 since the question of gate cur¬ 
rent becomes less relevant. 

Because the short-circuit current of the 78H05 is 7 A, the 25 A silicon-controlled rec¬ 
tifier (SCR) will certainly make short work of the fuse if it triggers. Figures 1.21 and 
1.22 are slightly more complex OVP circuits and can also be used. 

fROM 
TO LOAD 

GND 

Figure 1.22 Schematic diagrams of adjustable-voltage overvoltage protection circuits. 
a) An adjustable-voltage OVP circuit with an internal current amplifier to drive the SCR gate. 
b) An alternate circuit for a simple adjustable-voltage OVP circuit. 
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What does an OVP (often called an "overvoltage crowbar") do? It monitors a par¬ 

ticular bus voltage and shuts it down if it goes above a predetermined level. OVP cir¬ 
cuits can be designed to trigger 1 mV above our 5% tolerance band. Such circuits are 

not only complicated, but they may also create additional problems through accidental 
triggerings. The failure modes that are most likely to occur concern a regulator short or 
accidentally tying two buses together, for example the +5 V and +12 V. In either 

case, the result is a rapid voltage rise on the output lines. As voltage rises above the 
zener value, current flows into the SCR gate. At a certain point, usually below where 
any components would have been damaged, the SCR fires and shorts the output line to 
ground. The excessive current blows the fuse, eliminating the problem regulator or 
regulators (both fuses would blow if the +5 V and +12 V were connected). All this 
occurs very fast. The test circuit of figure 1.23 demonstrates what happens when the 
+ 5 V OVP suddenly has +12 V applied. Test circuits are the only way you ever want 
to see the action of an OVP. If your power supply functions properly, it should never 
trigger. The SCR never allows the line to go to 12 V before clamping it to ground. Re¬ 
placing the fuse with a 220 ohm resistor allows multiple applications of the push button 
without replacing fuses. 

♦12V 

1 mi/cm 

Figure 1.23 A test circuit to demonstrate the action of the overvoltage protector. 
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CHAPTER 2 
CENTRAL PROCESSOR 
BASICS 

There are many different microprocessors on the market and while instruction 
nomenclature is somewhat different for each one, the basic logical computing processes 
are similar in all devices. The rule to remember the next time a discussion turns to the 
capabilities of two computers is that "a computer is a computer/' I don't wish to imply 
that they are all the same, but similarities abound and 1 would not like to spend a life¬ 
time analyzing instruction sets and interfacing details before choosing one. 

I once had lunch with the designer of one of the largest selling personal computer sys¬ 

tems on the market. Thousands of computers had been sold, generating immense prof¬ 
its for the manufacturer. Our conversation eventually centered on the cost-effective¬ 
ness of his design. I had fanciful thoughts of a design team spending months reducing 
component count and analyzing instruction sets to determine minimum memory re¬ 
quirements. In actuality, my designer friend was given two months to come up with a 
manufacturable design. The investors' only question was the price and availability of 
the particular components he had chosen. Being an avid personal computer enthusiast, 
he simply built a computer around the microprocessor he already owned. The eventual 
advertising for his system touted the advanced architecture embodied in the central 

processor, but no machine-language programming facility was available to the user. It 
had only a high-level language BASIC interpreter and was, from an engineering point 
of view, simply a black-box computer. He could have used any microprocessor. So 
much for textbook engineering design. 

Unfortunately, the hobbyist who is building a microcomputer from scratch, and 
who won't be making a black box, has to try to pick a device that is somewhere in the 
middle of the performance and capability spectrum. The general rule that all computers 
perform similar functions is true, but a printed-circuit board is a luxury. The hobbyist 

who has to do all the wiring by hand will surely be interested in efficient design. It's a 
fact that some of the more esoteric microprocessors require very expensive peripheral 
circuitry. Even devices that seem quite straightforward, with limited instruction sets, 

can require 50 or more ICs as interface elements. The ultimate configuration should be 
a trade-off between circuit complexity, ease of testing, and component price. 

MICROPROCESSOR ARCHITECTURE 
The internal architecture of the microprocessor determines the support devices re¬ 

quired to make a microcomputer system. Perhaps the best place to start is to briefly 
discuss the major architectural differences. 

Definition: A microcomputer is a logical machine that manipulates binary numbers 
(data) and processes this information by following an organized sequence of program 
steps referred to as instructions. 

All microcomputers, like all computers, have the following features: 

1. Input — Facilities must exist to allow the entrance of data or instructions. 
2. Memory — The program sequence must be stored before and after execution, and 

resources must be available to store the result of any computations. 
3. Arithmetic logic unit — Performs arithmetic operations on input or stored data. 

CENTRAL PROCESSOR BASICS 21 

Copyrighted material 



4. Control section — Makes decisions regarding program flow and process control 
based on internal states of the results of arithmetic computations. 

5. Output — The results are delivered to the user or stored in an appropriate 
medium. 

The microprocessor is the single integrated circuit around which a microcomputer is 
constructed. The microprocessor is a device; the microcomputer is a system. In their 
least complex form, microprocessors include only the functions of items three and four 
and must rely on external devices attached to buses to perform the other tasks. Figure 
2.1 is the basic block diagram of an 8-bit microcomputer and shows the interconnec¬ 
tion of these buses and support elements. The computer in figure 2.1 uses six separate 

buses: memory address, memory data in and out, I/O address, and data input and out¬ 
put. The microprocessor contains a central processor that consists of the circuitry re¬ 
quired to access the appropriate memory and I/O locations and interpret the resulting 

instructions that are also executed in this unit. The central processor also contains the 
ALU (Arithmetic and Logic Unit), which is a combination network that performs arith¬ 
metic and logical operations on the data. Additionally, the central processor includes a 

control section that governs the operations of the computer, and the various data 
registers used for manipulation and storage of data and instructions. 

MICROPROCESSOR 
o 
oc 

T 
o 
o 

MEMORY DATA REGISTER 

MEMORY ADDRESS REGISTER 

ARITHMETIC/LOGIC UNIT 

ACCUMULATOR 

OATA OUT 

18) 

MEMORY 
DATA OUT (8) 

MEMORY OATA IN (8) 

MEMORY ADDRESS 

(16) 

MEMORY 

I/O 

ADORESS 

(8) 

OUTPUT 

DATA IN 

(8) 

INPUT 

Figure 2.1 A basic block diagram of a microcomputer illustrating the data busing concept. Numbers 
in parentheses are the usual required quantity of physical wires to perform bus functions for an 8-bit 
microprocessor. 

Actually few microprocessors support six separate buses. The number of pins that 
would be required on the IC is out of the question. Instead, to reduce pinouts, compo¬ 
nent manufacturers often combine the data input and output buses and make them "bi¬ 
directional/' During an output instruction, data flows from the microprocessor to the 
output device and vice versa during an input instruction. To further cut the number of 
pins required on the central processor, the memory address bus can also serve as the 
address bus for input and output devices. During input/output instructions, the ad¬ 
dress present on the address lines references a particular input/output device(s). The 
resulting reduced configuration is shown in figure 2.2. 

The concept of two buses is easy to understand and, from a hardware point of view, 
easy to utilize. The buses are time and function multiplexed. That is, during memory 
operations, the bits on the address bus refer to a memory location, and data on the data 
bus represent the content of memory. The direction of the data flow (to or from the 
central processor) is controlled within the microprocessor. Activities with input/out¬ 
put devices are performed in a similar fashion. During those instructions, input or out¬ 
put data and device addresses occupy the buses. 
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ADDRESS 
BUS 

(16) 

Figure 2.2 A block diagram of a microcomputer utilizing multiplexed bi directional busing techniques 
to reduce pinout. 

The number of bus wires can be further reduced by combining both data and address 
on the same lines and time multiplexing the data transfer along them. Figure 2.3 il¬ 
lustrates this final configuration. This method requires additional circuit elements to 
demultiplex and store pertinent data. The additional external components necessary to 
use this architectural feature defeat its purpose and make its use inadvisable for the 
hobbyist. There are other microprocessors that are simpler to use. 

STATUS 

SINGLE COMBINATION BI-DlRECTlONAl ADDRESS/DATA BUS 

1 _^_ 

TIMING 
tMf\ ADORESS 

CONTROL 
LOGIC 

_> STORAGE 

REGISTER 

MEMORY 

OUTPUT 

INPUT 

DERIVED ADORESS 

* 

Figure 2.3 A block diagram of a microcomputer utilizing a single multiplexed bi-directional bus for 
both memory and input/output functions. 

When building rather than buying a personal computer, the following criteria must 

be carefully considered: 

1. Circuit complexity — Keep components to a reasonable minimum. The more com¬ 
ponents in a design, the more likelihood of wiring errors and faulty devices. 

2. Cost — While cost is important, it should not be the primary consideration. Any 
microprocessor function could be simulated by using small scale integrated logic; 
however, indirect costs resulting from using 200 chips to replace 3 or 4 LSI (laige 
scale integration) devices would negate the value of using cheaper parts initially. 
On the other hand, in the semiconductor industry, density means dollars. The 
more functions a device can provide, and the fewer components necessary to ac- 
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complish these tasks, the higher the price. The level of integration incorporated in 
a homebrew computer should fit somewhere in the middle. The ZAP computer 
outlined in this book is a prime example of this philosophy. It uses a combination 
of cost-effective LSI (large scale integration) and inexpensive SSI (small scale in¬ 
tegration) to produce a computer that the hobbyist can truly build, test, and use. 

3. Software compatibility and availability — Building the hardware of a microcom¬ 
puter is only half the job. It must be programmed to perform useful work. Initially, 
the builder will by necessity hand code and assemble his own programs. Eventual¬ 
ly, however, the need may arise for the computer to do a task requiring a very 
large program which cannot be easily hand assembled. The user must rely upon an 
assembler program in a larger machine. The assembler program would, of course, 
have to be compatible with the instruction set of the microcomputer. 

A further consideration is that personal computer enthusiasts are forever ex¬ 
changing software. It is possible to convert programs to run on any central pro¬ 
cessor, but the effort would be the same as writing the entire program from 
scratch. This defeats the purpose of exchanging software. The personal computer 
owner should choose a microprocessor that is somewhat compatible with the com¬ 
puters already on the market. My statement that all computers are alike is theoreti¬ 
cally true, but a book on how to build an esoteric one-of-a-kind computer is of lit¬ 
tle practical value. 

Each criterion could be analyzed and answered individually, but we must give some 

credit to the manufacturers of personal computers for doing some of the thinking for us 
already. The fact that so many personal computers are in use has established de facto 
standardization of central processor choice. To be compatible with existing software 
and to have sufficient documentation available, the builder should consider choosing 
among those central processors in commercial use. The four most used microproces¬ 

sors are 

1. Intel 8080A 
2. Motorola 6800 
3. MOS Technology 6502 
4. Zilog Z80 

As a result of each device's wide following, documentation and software are readily 
available. The availability of 8080A compatible software is highest; cost is low, but its 
circuit complexity is also the greatest of the above. The 8080A, while described as a 
“single-chip computer," relies on various external drivers and support devices. Its 
minimum functional configuration consists of three chips as shown in figure 2.4. Its 
central processor bus structure is similar to figure 2.3, but when combined with the 
8224 and 8228 support chips, it emulates the more desirable bus architecture outlined in 
figure 2.2. 

8224 
CLOCK 

0RIVER 

80804 

PROCESSOR 

3 
IV ) 8228 

BUS 

ORIVER 
AND 
CONTROLLER 

K 

TIMING a STATUS 1 

) 

ADDRESS BUS 

DATA BUS 

CONTROL BUS 

Figure 2.4 A minimum three-chip 8080A configuration illustrating the necessary support devices. The 
control bus contains the timing functions necessary to decode the contents of the data and address 
buses. 
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The best of both worlds is incorporated within the Z80. Not only does it execute the 
complete instruction set of the 8080A, but it also has additional instructions that serve 
to make it a very powerful processor. The Z80 bus structure is illustrated in figure 2.5. 

The Z80 is slightly more expensive than the other processors listed. However, its re¬ 
duced external circuitry results in an effective cost comparison. Further, the ease of in¬ 
terfacing the Z80 makes it the natural choice when building a microcomputer from 

scratch. 

AOORESS 8US 

(16) 

OATA BUS 

(8) 

CONTROL BUS 

(13) 

Figure 2.5 A block diagram of the Zilog Z80 bus structure. 
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CHAPTER 3 
TUC 7QO 

MICROPROCESSOR 

Many books have been written on the software and hardware attributes of the Z80. 
Although I am not attempting to duplicate the efforts of other authors, any book 
dedicated to the construction of a microcomputer would be incomplete without a sec¬ 
tion describing the processor in some detail. By completely understanding the internal 
logic and external control functions of the central processor, you will be able to under¬ 
stand better the way I've designed the rest of the system hardware. You have many op¬ 
tions when constructing a computer from scratch. The deeper your degree of under¬ 
standing, the greater your confidence in the outcome, and it is more likely that you will 
add enhancements to your own design. 

The ZAP computer allows considerable latitude in the selection of peripheral inter¬ 
facing. The choice depends primarily upon the design philosophy of the system, which 

starts with the central processor. 

CENTRAL PROCESSOR ARCHITECTURE 
The Z80 is a register-oriented microprocessor. Eighteen 8-bit and four 16-bit registers 

within the central processor are accessible to the programmer and function as static 
programmable memory. These registers are divided into two sets, main and alternate, 
each of which contains six general purpose 8-bit registers that may be used either in¬ 
dividually, or as three pairs of 16-bit registers. Also included are two sets of ac¬ 
cumulators and flag registers. Figure 3.1 illustrates the internal architecture of the Z80 
central processor. Figure 3.2 shows that within the Z80 there are accumulators and flag 
registers, along with general and special purpose registers. 

Figure 3.1 A block diagram of the internal architecture of the Z80 central processor. 
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ACCUMULATOR FLAGS 
A F 

B C 

0 E 

M L 

GENERAL 

PURPOSE 

REGISTERS 

ACCUMULATOR 
A* 

FLAGS 
F* 

B* C* 

0* E1 

H* L* 

INTERRUPT 

VECTOR 
1 

MEMORY 

REFRESH 
R 

■N 

INDEX REGISTER IX 

INDEX REGISTER IV 

STACK POINTER SP 
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SPECIAL 
PURPOSE 
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Figure 3.2 Z80 central processor register configuration. 

The following is a description of the function and structure of the major components 
of the central processor. 

I. Registers 
A. Accumulators and Flag Registers 

The centra! processor contains two independent accumulator and flag- 
register pairs, one in the main register set and the other in the alternate 

register set. The accumulator receives the results of all 8-bit arithmetic 
and logical operations, whereas the flag register indicates the occur¬ 
rence of specific logical or arithmetic conditions in the processor such 
as parity, zero, sign, carry, and overflow. A single exchange instruc¬ 
tion allows the programmer to select either accumulator or flag-regis¬ 
ter pair. 

B. General Purpose Registers 
There are two similar sets of general purpose registers. The main regis¬ 
ter set contains six 8-bit registers called B, C, D, E, H, and L; the al¬ 
ternate register set also contains six 8-bit registers referred to as B', 
C, D', E', IT, and L\ For 16-bit operations, these registers can be 
grouped in 16-bit pairs (BC, DE, HL or BC, DE', HL'). A single ex¬ 
change instruction allows the programmer to alternately choose be¬ 
tween the register-pair sets. 

C. Special Purpose Registers 
1. PC (program counter) 

The program counter contains a 16-bit address in memory 
from which the current instruction will be fetched. Follow¬ 
ing execution of the instruction, the PC counter is either in¬ 
cremented, if the program is to proceed to the next byte in 
memory, or the present PC contents are replaced with a 
new value, if a jump or call instruction is to be executed. 

2. SP (stack pointer) 
The Z80 allows several levels of subroutine nesting 
through use of a "stack" and a "stack pointer": when cer¬ 
tain instructions are executed, or when calls to subroutines 
are made, the PC counter and other pertinent data can be 
temporarily stored on a stack. A stack is a reserved area of 
several memory locations, the top of which is indicated by 
the contents of the stack pointer. That is to say, the stack 
pointer shows the address of the most recently made entry, 
because the memory locations are organized as a last-in, 
first-out file. By looking at particular entries in the stack, 
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the central processor returns to a main program regardless 
of the depth of nested subroutines. Theoretically, the stack 
could be 64 K bytes long; however, program space must 
not be overwritten by an expanding stack. 

D. IX and IY Index Registers 
These registers facilitate table data manipulation. They are two in¬ 
dependent 16-bit registers that hold the base addresses used in indexed 
addressing modes, and point to locations in memory where pertinent 
data is to be stored or retrieved. Incorporated within the indexed in¬ 

structions is a two's complement signed integer that specifies displace¬ 
ment from this base address. 

E. Interrupt Page Address Register (I) 
This is an 8-bit register that can be loaded with a page address of an in¬ 
terrupt service routine. During a mode 2 interrupt program, control 

will vector to this page address. 
F. Memory Refresh Register (R) 

To enable dynamic memories for the Z80, a 7-bit memory refresh 
register is automatically incremented after each instruction fetch. 

II. Arithmetic and Logic Unit 
Arithmetic manipulations and logical operations are handled eight bits at a time 
in the Z80 ALU (arithmetic and logic unit). The ALU communicates internally 
to the central processor registers and is not directly accessible by the program¬ 
mer. The ALU performs the following operations; 

LEFT or RIGHT SHIFT 

INCREMENT 
DECREMENT 
ADD 
SUBTRACT 
AND 
OR 
EXCLUSIVE OR 
COMPARE 
SET BIT 
RESET BIT 
TEST BIT 

III. Instruction Register and Central Processor Control 
The instruction register holds the contents of the memory location addressed by 
the PC (program counter) and is loaded during the fetch cycle of each instruc¬ 
tion. The central processor control unit executes the functions defined by the in¬ 

struction in the instruction register and generates all control signals necessary to 
transmit the results to the proper registers. 

IV. Central Processor Hardware 
A. Figure 3.3 details the pinout of the Z80. It comes in an industry stan¬ 

dard 40 pin dual in-line package. The following is a listing and ex¬ 
planation of the pin functions: 

A0—At* Three-state output, active high. A0—A,s constitute a 
(Address 16-bit address bus. These signals provide the address for 
Bus) memory data exchanges (up to 64 K bytes) and for I/O 

device data exchanges. I/O addressing uses the eight 
lower address bits to allow the user to directly select up 
to 256 input or 256 output ports. A« is the least signifi¬ 
cant address bit. During refresh time, the lower seven 
bits contain a valid refresh address. 

D0—D7 Three-state input/output, active high. D0—D7 consti- 
(Data Bus) tute an 8-bit bi-directional data bus which is used for 

data exchanges with memory and I/O devices. 

Ml Output, active low. Ml indicates that the current ma- 
(Machine chine cycle is the operation-code fetch cycle of an in- 
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Cycle One) struction execution. Note that during execution of 
2-byte opcodes. Ml is generated as each opcode byte 
is fetched. These 2-byte opcodes always begin with 
CBH, DDH, EDH, or FDH. Ml also occurs with 
IORQ to indicate an interrupt acknowledge cycle. 

MREQ 
(Memory 
Request) 

IORQ 
(Input/ 
Output 
Request) 

RD 
(Memory 
Read) 

WR 
(Memory 
Write) 

RFSH 
(Refresh) 

HALT 
(Halt 
State) 

WAIT 
(Wait) 

INT 
(Interrupt) 

NMI 
(Non- 
Maskable 

Three-state output, active low. The memory request 
signal indicates that the address bus holds a valid ad¬ 
dress for a memory-read or memory-write operation. 

Three-state output, active low. The IORQ signal indi¬ 
cates that the lower half of the address bus holds a valid 
I/O address for an I/O read or write operation. An 
IORQ signal is also generated with an Ml signal when 
an interrupt is being acknowledged to indicate that an 
interrupt response vector can be placed on the data bus. 
Interrupt acknowledge operations may occur during 
Ml time while I/O operations are prohibited. 

Three-state output, active low. RD indicates that the 
central processor wants to read from memory or an I/O 
device. The addressed I/O device or memory should use 
this signal to gate data onto the central processor data 
bus. 

Three-state output, active low. WR indicates that the 
central processor data bus holds valid data to be stored 
in the addressed memory or I/O device. 

Output, active low. RFSH indicates that the lower 
seven bits of the address bus contain a refresh address 
for dynamic memories and the current MREQ signal 
should be used to do a refresh read to all dynamic 
memories. 

Output, active low. HALT indicates that the central 
processor has executed a HALT instruction and is 
awaiting either a nonmaskable or a maskable interrupt 
(with the mask enabled) before operation can resume. 
While halted, the central processor executes NOPs (no 
operation) to maintain memory refresh activity. 

Input, active low. WAIT indicates to the Z80 central 
processor that the addressed memory or I/O devices are 
not ready for a data transfer. The central processor con¬ 
tinues to enter wait states as long as WAIT is active; 
this signal allows memory of I/O devices to be syn¬ 
chronized to the central processor. 

Input, active low. The Interrupt request signal is gener¬ 
ated by I/O devices. A request will be honored at the 
end of the current instruction if the internal software 
controlled interrupt enable flip-flop is enabled and if the 
BUSRQ signal is not active. When the central pro- 
cessor accepts the interrupt, an acknowledge signal 
(IORQ during Ml time) is sent out at the beginning of 
the next instruction cycle. The central processor can re¬ 
spond to an interrupt in the three different modes. 

Input, negative edge triggered. The nonmaskable inter¬ 
rupt request line has a higher priority than INT and is 
always recognized at the end of the current instruction. 
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Interrupt) regardless of the status of the interrupt-enable flip-flop. 
NMI forces the Z80 central processor to restart to loca¬ 
tion 0066l6. The program counter is automatically saved 
in the external stack so that the user can return to the 
program that was interrupted. Note that continuous 
WAIT cycles can prevent the current instruction from 
ending, and that a BUSRQ will override an NMI. 

r 

SYSTEM 
CONTROL 

MREQ 

IORQ 

£5 
WR 

RFSH 

f MALT 

CPU 
CONTROL 

IN? 

NMI 

^ RESET 

CPU BUS j BUSRQ 
CONTROL ] BUSAK 

CLOCK 

♦ 5V 

GNO 

AO 

A] 

A2 

A3 

A4 

AS 

A6 

A9 

A10 
All 

A12 

A13 

A14 

A15 

00 

01 

02 

03 

04 

05 

06 

07 

ADDRESS 
BUS 

OATA 
BUS 

Figure 3.3 Pin configuration for the Z80 microprocessor. 

The actual timing of these signals will be discussed in the hardware sections. 

V. Z80 Instruction Types 
The Z80 can execute 158 separate instructions including all 78 of the 8080A. 
They can be grouped as follows: 

A. LOAD AND EXCHANGE 
Load instructions move data between registers or between registers 
and memory. The source and destination of this data is specified 
within the instruction. Exchange instructions swap the contents of two 
registers. 

B. ARITHMETIC AND LOGICAL 
These instructions operate on data in the accumulator, a register, or a 
designated memory location. Results are placed in the accumulator 
and flags are set accordingly. Arithmetic operations include 16-bit ad¬ 
dition and subtraction between register pairs. 

C. BLOCK TRANSFER AND SEARCH 
The Z80 uses a single instruction to transfer any size block of memory 
to any other group of contiguous memory locations. The block search 
uses a single command to examine a block of memory for a particular 
8-bit character. 

D. ROTATE AND SHIFT 
Data can be rotated and shifted in the accumulator, a central pro¬ 
cessor register, or memory. These instructions also have binary-coded 
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decimal (BCD) handling facilities. 
E. BIT MANIPULATION 

Bit manipulation includes set, reset, and test functions. Individual bits 
may be modified or tested in the accumulator, a central processor, or 
memory. The results of the test operations are indicated in the flag 
register. 

F. JUMP, CALL AND RETURN 
A jump is a branch to a program location specified by the contents of 

the program counter. The program counter contents can come from 
three addressing modes: immediate, extended, or register indirect. A 

call is a special form of jump where the address following the call in¬ 
struction is pushed onto the stack before the jump is made. A return is 
the reverse of the call. This category includes special restart instruc¬ 
tions. 

G. INPUT AND OUTPUT 
These instructions transfer data between register and memory to ex¬ 
ternal I/O devices. There are 256 input and 256 output ports avail¬ 
able. Special instructions provide for moving blocks of 256 bytes to or 
from I/O ports and memory. 

H. CPU CONTROL 
These instructions include halting the CPU or causing a NOP (no 
operation) to be executed. The ability to enable or disable interrupt in¬ 
puts is a further control capability. 

VI. Instruction and Data Formats 
Memory for the Z80 is organized into 8-bit quantities called bytes (see figure 
3.4). Each program byte is stored in a unique memory position and is referenced 
by a 16-bit binary address. 

Total direct addressing capability is 65,536 bytes (64 K) of memory, which 
may be any combination of ROM (read-only memory), EPROM (erasable-pro¬ 
grammable read-only memory), or programmable memory. Data is stored in 
the formats of figure 3.5. 

MS8 

(MOST SIGNIFICANT BIT) 
ISB 

(LEAST SIGNIFICANT BIT) 

Figure 3.4 Organization of a data byte in the Z80. 

SINGLE-BYTE INSTRUCTIONS 

BYTE l 07 00 OPCODE 

TWO-BYTE INSTRUCTIONS 

BYTE 1 

BYTE 2 

07 00 

07 00 

OPCODE 

OAT* OR 
ADDRESS 

THREE-BYTE INSTRUCTIONS 

8YTE 1 07 DO OPCODE 

BYTE 2 07 00 1 
BYTE 3 07 00 

DATA OR 
(ADDRESS 

]J 
FOUR-BYTE INSTRUCTIONS 

BYTE 1 I 07 

BYTE 2 07 

BYTE 3 [07 

BYTE 4 07 

00 
OPCODE 

00 

DO 

DO 

OATA OR 

AOORESS 

Figure 3.5 Machine-language instruction formats for the Z80. 
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VII. Z80 Status Flags 
The flag register (F and F') supplies information to the user regarding the status 
of the central processor at any given time. There are four testable and two 
nontestable flag bits in each register. Figure 3.6 shows the position and identity 
of these flag bits. 

BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 

-1-1-1-I-1-1-1- 
S Z X H X P/V N C 

_I_I_I_1_I_I_I_ 
MSB LSB 

C * CARRY FLAG 

n * ado/subtract flag 

P/Y» PARITY/OVERFLOW FLAG 

H»HALF-CARRY FLAG 

Z * ZERO FLAG 
S• SIGN FLAG 
X • NOT USED 

Figure 3.6 Position and identity of status flag bits in the flag register. 

Instructions set (flag bit = 1) or reset (flag bit = 0) flags in a manner rele¬ 
vant to the particular operation being executed. 

VIII. The Z80 Instruction Set 
The following symbols and abbreviations are used in the subsequent description 
of the Z80 instructions: 

Symbol Meaning 

accumulator 
address 
high-order address 
low-order address 
data 
high-order data 
low-order data 
port 

r, r' 
n 
nn 
d 
b 
e 
cc 

Register A 
A 16-bit address quantity 
The most significant 8 bits of the 16-bit address 
The least significant 8 bits of the 16-bit address 
An 8- or 16-bit quantity 
The most significant 8 bits of the 16-bit data 
The least significant 8 bits of the 16-bit data 
An 8-bit address of an I/O device 
One of the registers A, B, C D, E, H, or L 
A 1-byte expression in the range of 0 thru 255 
A 2-byte expression in the range of 0 thru 65,535 
A 1-byte expression in the range of —128 to 127 
An expression in the range of 0 thru 7 
A 1-byte expression in a range of —126 to 129 
The state of the flags for conditional JR and JP instructions: 

XXH 

qq 
ss 

cc Condition Relevant Flag 

000 NZ non zero Z . 
001 Z zero z 
010 NC non carry c 
011 C carry c 
100 PO parity odd P/V 
101 PE parity even P/V 
110 P sign positive s 
111 M sign negative s 

Denotes hexadecimal address value 
Any one of the register pairs BC, DE, HL, or AF 
Any one of the register pairs BC, DE, HL, or SP 
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pp Any one of the register pairs BC, DE, IX, or SP 
IT Any one of the register pairs BC, DE, IY, or SP 
S Any of r, n, (HL), (IX + d), or (IY + d) 
dd Any one of the register pairs BC, DE, HL, or SP 
m Any of r, (HL), (IX + d), or (IY + d) 
(HL) Specifies the contents of memory at the location 

by the contents of the register pair HL 
(nn) Specifies the contents of memory at the location 

by the 2-byte expression in nn 
PC Program counter 
SP Stack pointer 

t An expression in the range of 0 thru 7. 
C,N,P/V, H, Z,S Condition flags: 

C Carry 
N Add/Subtract 

P/V Parity/Overflow 
H Half-Carry 
Z Zero 
S Sign 

— "is transferred to" 
A Logical AND 
0 Exclusive OR 
V Inclusive OR 

+ Addition 
— Subtraction 
- "is exchanged with" 

EIGHT-BIT LOAD GROUP 

LDr, r* 
r — r' 
The contents of any register r' are loaded into any other register r. 

—i—i—1—1i—n—l— 

_l-1-1_I_I_L_i_ 

Cycles: 1 
States: 4 
Flags: none 

LD r, n 
r — n 
The 8-bit integer n is loaded into any register r. 

-1-1-1-1-1-1-1-1 
0 0-—r--1 1 0 

_j_i_i_i_1 1 1 I 

Cycles: 2 
States: 7 
Flags: none 

LD r, (HL) 
r — (HL) 
The 8-bit contents of memory location (HL) are loaded into register r. 

—i—i—r~i—i—i—i— 
0 -r--1 1 0 

_I_I_I_I_L_J_I- 
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Cycles: 2 
States: 7 
Flags: none 

LD r, (IX+d) 
r - (IX+d) 
The operand (IX+d) (the contents of the Index Register IX summed with a 
displacement integer d) is loaded into register r. 

Cycles: 5 
States: 19 
Flags: none 

LD r, (IY+d) 
r - (IY+d) 
The operand (IY+d) (the contents of the Index Register IY summed with a 
displacement integer d) is loaded into register r. 

Cycles: 5 
States: 19 
Flags: none 

LD (HL), r 
(HL) - r 
The contents of register r are loaded into the memory location specified by 
the contents of the HL register pair. 

Cycles: 2 
States: 7 
Flags: none 

LD (IX+d), r 
(IX+d) - r 
The contents of register r are loaded into the memory address specified by the 
contents of Index Register IX summed with d, which is a two's complement 
displacement integer. 

Cycles: 5 
States: 19 
Flags: none 
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LD (IY+d), r 
(IY+d) - r 
The contents of register r are loaded into the memory address specified by the 
sum of the contents of the Index Register IY and d, a two's complement 
displacement integer. 

Cycles: 5 
States: 19 
Flags: none 

LD (HL), n 
(HL) - n 
Integer n is loaded into the memory address specified by the contents of the 
HL register pair. 

Cycles: 3 
States: 10 
Flags: none 

LD (IX+d), n 
(IX+d) - n 
The n operand is loaded into the memory address specified by the sum of the 
contents of the Index Register IX and the two's complement displacement 
operand d. 

Cycles: 5 
States: 19 
Flags: none 

LD (IY+d), n 
(IY+d) - n 
Integer n is loaded into the memory location specified by the contents of the 
Index Register IY summed with a displacement integer d. 

Cycles: 5 
States: 19 
Flags: none 
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LD A, (BC) 
A - (BC) 
The contents of the memory location specified by the contents of the BC 
register pair are loaded into the Accumulator. 

I—l—I I I—I—l-I-1 
0 0 0 0 1 0 1 0 

_I_I_I_I_I_I_I_I 

Cycles: 2 
States: 7 
Flags: none 

LD A, (DE) 
A - (DE) 
The contents of the memory location specified by the register pair DE are 

loaded into the Accumulator. 
f—i—r-1—i—i i i | 

0 0 0 1 1 0 1 0 
_I_I_I_1_I_I_I—I 

Cycles: 2 
States: 7 
Flags: none 

LD A, (nn) 
A — (nn) 
The contents of the memory location specified by the operands nn are loaded 
into the Accumulator. The first n operand is the low-order byte of a 2-byte 
memory address. 

Cycles: 4 
States: 13 
Flags: none 

LD (BC), A 
(BC) - A 
The contents of the Accumulator are loaded into the memory location 
specified by the contents of the register pair BC. 

r t i ‘T • i—i—i—i— 
0 0 0 0 0 0 1 0 

—I—I—I_I—I—I_I— 

Cycles: 2 
States: 7 
Flags: none 

LD (DE), A 
(DE) - A 
The contents of the Accumulator are loaded into the memory location 
specified by the DE register pair. 

—i-1—i-1—i-r~~i-1 
0 0 0 1 0 0 1 0 
_l_l_I_I_I_l l 1 

Cycles: 2 
States: 7 
Flags: none 
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LD (nn), A 
(nn) — A 
The contents of the Accumulator are loaded into the memory address 
specified by the operands nn. The first n operand is the low-order byte of 
operand nn. 

Cycles: 4 
States: 13 
Flags: none 

LD A, I 
A - I 
The contents of the Interrupt Vector Register I are loaded into the 
Accumulator. 

Cycles: 2 
Qf-ifpc* Q 

Flags: S, Z, H, N, P/V 

S: set if I < 0; reset otherwise 

Z: set if 1=0; reset otherwise 
H,N: reset 
P/V: contains contents of IFF2 

LD A, R 
A — R 
The contents of Memory Refresh Register R are loaded into the Accumulator. 

Cycles: 2 
States: 9 
Flags: S,Z,H,N,P/V 

S: set if R < 0; reset otherwise 
Z: set if R=0; reset otherwise 
H,N: reset 
P/V: contains contents of IFF2 

LD I, A 
I - A 
The contents of the Accumulator are loaded into the Interrupt Control Vec¬ 
tor Register I. 

Cycles: 2 
States: 9 
Flags: none 
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LD R, A 
R - A 

The contents of the Accumulator are loaded into the Memory Refresh 
Register R. 

—r—i—i—i—i—i—i—| 
1110 110 1 

—i—i—l—I—l—I—I—I 

Cycles: 2 
States: 9 
Flags: none 

SIXTEEN-BIT LOAD INSTRUCTIONS 

LD dd, nn 
dd — nn 

The 2-byte integer nn is loaded into the dd register pair, where dd defines the 
BC, DE, HL, or SP register pairs, assembled as follows in the object code: 

Pair dd 

BC 00 
DE 01 
HL 10 
SP 11 

Cycles: 3 
States: 10 
Flags: none 

LD IX, nn 
IX - nn 

LD IY, nn 
1Y - nn 
Integer nn is loaded into the Index Register IY. 

Cycles: 4 
States: 14 
Flags: none 
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LD HL, (nn) 
H — (nn-f 1), L — (nn) 
The contents of memory address nn are loaded into register L, and the con¬ 
tents of the next highest memory location (nn-f 1) are loaded into register H. 

Cycles: 5 
States: 16 
Flags: none 

LD dd, (nn) 
ddw — (nn-f 1), dd* — (nn) 
The contents of address nn are loaded into the low-order portion of register 
pair dd, and the contents of the next highest memory address (nn-f 1) are 

LD IX, (nn) 
1X„ - (nn-f 1), IX* - (nn) 
The contents of the address nn are loaded into the low-order portion of Index 
Register IX, and the contents of the next highest memory address (nn-f 1) are 

LD IY, (nn) 
IY* - (nn-f 1), IY* - (nn) 
The contents of address nn are loaded into the low-order portion of Index 
Register IY, and the contents of the next highest memory address (nn -f 1) are 
loaded into the high-order portion of IY. 
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LD (nn), 

LD (nn), dd 
(nn + 1) — dd*, (nn) — dd*. 
The low-order byte of register pair dd is loaded into memory address nn; the 
upper byte is loaded into memory address nn + 1. 

Cycles: 6 
States: 20 
Flags: none 

LD (nn), IX 
(nn+1) - IX*, (nn) - IX* 
The low-order byte in Index Register IX is loaded into memory address nn; 
the upper-order byte is loaded into the next highest address nn+1. 

Cycles: 6 
States: 20 
Flags: none 

LD (nn), IY 
(nn + 1) - IY*, (nn) - IY, 
The low-order byte in Index Register IY is loaded into memory address nn; 
the upper-order byte is loaded into memory location nn+1. 
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Cycles: 6 
States: 20 
Flags: none 

LD SP, HL 
SP - HL 
The contents of the register pair HL are loaded into the SP (stack pointer). 

Cycles: 1 
States: 6 
Flags: none 

LD SP, IX 
SP - IX 
The 2-byte contents of Index Register IX are loaded into the SP (stack 
pointer). 

Cycles: 2 
States: 10 
Flags: none 

LD SP, IY 
SP - IY 
The 2-byte contents of Index Register IY are loaded into the SP (stack 
pointer). 

Cycles: 2 
States: 10 
Flags: none 

PUSH qq 
(SP—2) — qqL, (SP-1) — qq„ 
The contents of the register pair qq are pushed into the external memory 
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 
16-bit address of the current "top” of the Stack. This instruction first 
decrements the SP and loads the high order byte of register pair qq into the 
memory address now specified by the SP; then decrements the SP again and 
loads the low order byte of qq into the memory location corresponding to 
this new address in the SP. 

Cycles: 3 
States: 11 
Flags: none 
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PUSH IX 
(SP-2) - IXt, (SP-1) - IX* 
The contents of the Index Register IX are pushed into the Stack. This instruc¬ 
tion first decrements the SP and loads the high-order byte of IX into the 
memory address now specified by the SP; it then decrements the SP again 
and loads the low-order byte into the memory location corresponding to this 
new address in the SP. 

Cycles: 3 
States: 15 
Flags: none 

1 
1 1— T— T— T— T— 1—1 

1 0 1 1 1 0 1 
J_ J_ J_ J_ J_ J_ ill 

1 
1 1 I l n I- 

1 1 0 0 1 0 ll 
J— J_ l 1 J_ J_ -L_J 

PUSH IY 
(SP-2) - IYt, (SP-1) - IY* 
The contents of the Index Register IY are pushed into the Stack. This instruc¬ 
tion first decrements the SP and loads the high-order byte of IY into the 
memory address now specified by the SP; it then decrements the SP again 
and loads the low-order byte into the memory location corresponding to this 
new address in the SP. 

Cycles: 4 
States: 15 
Flags: none 

POP qq 
qq* - (SP + 1), qq£ - (SP) 
The top 2 bytes of the Stack are popped into register pair qq. This instruction 
first loads into the low-order portion of qq the byte at the memory location 
corresponding to the contents of SP; then SP is incremented and the contents 
of the corresponding adjacent memory location are loaded into the high- 
order portion of qq, and the SP is now incremented again. Ii ' l-1-1-1-1-1-1 

llqqOOOll 
_i_i_L—J_I_I_1—1 

Cycles: 3 
States: 10 
Flags: none 

POP IX 
IX* - (SP+1), IXt - (SP) 
The top 2 bytes of the Stack are popped into Index Register IX. This instruc¬ 
tion first loads into the low-order portion of IX the byte at the memory loca¬ 
tion corresponding to the contents of SP; the SP is incremented and the con¬ 
tents of the corresponding adjacent memory location are loaded into the 
high-order portion of IX. The SP is now incremented again. 

i i i i—i—i—i—I 
110 1110 1 _l_l_I_I_I_l—J_I 
"—r—r—i—i—r—t—r- 

Cvcles* 4 11100001 

mT 14 I'll'''' 
Flags: none 
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POP IY 
IY„ - (SP+1), IY* - (SP) 
The top 2 bytes of the Stack are popped into Index Register IY. This instruc¬ 
tion first loads into the low-order portion of IY the byte at the memory loca¬ 
tion corresponding to the contents of SP; then the SP is incremented and the 
contents of the corresponding adjacent memory location are loaded into the 
high-order portion of IY. The SP is now incremented again. 

Cycles: 4 
States: 14 
Flags: none 

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

EX DE, HL 
DE - HL 
The 2-byte contents of register pairs DE and HL are exchanged. 

—i—i—i—i—i—i—i— 

1110 10 11 
—i—i—i—i—i—i—i— 

Cycles: 1 
States: 4 
Flags: none 

EX AF, AF 
AF ~ AF' 
The 2-byte contents of the register pairs AF and AF' are exchanged. 

—i-1-1-1—i-1—i-1 

0 0 0 0 1 0 0 0 
-1-1—I—I—l—I_l_1 

Cycles: 1 
States: 4 
Flags: none 

EXX 
(BC) - (BC), (DE) ~ (DE')# (HL) - (HL') 
Each 2-byte value in register pairs BC, DE, and HL is exchanged with the 
2-byte value in BC', DE', and HL' respectively. 

—i—i—i—i—i—i—i— 
110 110 0 1 

_i—i_I_i_i .. . i i . - 

Cycles: 1 
States: 4 
Flags: none 
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EX (SP), HL 
H - (SP+1), L - (SP) 
The low-order byte contained in register pair HL is exchanged with the con¬ 
tents of the memory address specified by the contents of register pair SP, and 
the high-order byte of HL is exchanged with the next highest memory address 
(SP+1). 

—i—i—i—i—i—i i 1 

1 1 1 0 0 0 1 1 
1 1 III_I_1_I 

Cycles: 5 
States: 19 
Flags: none 

EX (SP), IX 
IX„ - (SP+1), IX, - (SP) 
The low-order byte in the Index Register IX is exchanged with the contents of 
the memory address specified by the contents of register pair SP, and the 
high-order byte of IX is exchanged with the next highest address (SP+1). 

|—i—i—i—i—i—i—i—| 
110 1110 1 

I_i_i_I_i_I_I_l_1 

—i—i—i—i—i—i—i— 

Cycles: 6 1 1 1 0 0 0 1 1 
States: 23 L 1 1 1 1 1 1 1- 
Flags: none 

EX (SP), IY 

I Yu - (SP+1), IY, - (SP) 
The low-order byte in Index Register IY is exchanged with the contents of the 
memory address specified by the contents of register pair SP, and the high- 
order byte of IY is exchanged with the next highest memory address. 

Cycles: 6 
States: 23 
Flags: none 

LDI 
(DE) - (HL), DE - DE + 1, HL - HL+1, BC - BC-1 
A byte of data is transferred from the memory location addressed by the con¬ 
tents of the HL register pair to the memory location addressed by the contents 
of the DE register pair. Then both register pairs are incremented and the BC 
(byte counter) register pair is decremented. 

-1-1-l-1-1-1-1-I 
1110 110 1 

_I_I_I_I_I_I_I_I 

Cycles: 
States: 
Flags: 

4 
16 
H,N,P/V 

“T—i—i—i—r—l—i— 
1 0 1 0 0 0 0 0 
—I_I_I_I 1 i » - 

H, N: reset 
P/V: set if BC —1^0; reset otherwise 
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LDIR 

(DE) - (HU DE - DE+1, HL - HL+1, BC - BC-1 
This 2-byte instruction transfers a byte of data from the memory location ad¬ 
dressed by the contents of the HL register pair to the memory location ad¬ 
dressed by the DE register pair. Then, both register pairs are incremented and 
the BC (byte counter) register pair is decremented. If decrementing causes the 
BC to go to 0, the instruction is terminated. If BC is not 0, the program 

counter is decremented by 2 and the instruction is repeated. Note: if BC is set 
to 0 prior to instruction execution, the instruction will loop through 64 K 
bytes. Also, interrupts will be recognized after each data transfer. 

For BC*0: 

Cycles: 5 
States: 21 

For BC = 0: 

Cycles: 4 
States: 16 

Flags: H,N,P/V: reset 

LDD 
(DE) - (HL), DE - DE—1, HL - HL-1, BC - BC-1 

This 2-byte instruction transfers a byte of data from the memory location ad¬ 
dressed by the contents of the HL register pair to the memory location ad¬ 

dressed by the contents of the DE register pair. Then both register pairs in¬ 
cluding the BC (byte counter) register pair are decremented. 

-1-1-1-1-1-1-1- 

1110 110 1 
— 1- 1 I „J_I—l—l— 

-1-1-1-1—I—i—i- 

10 10 10 0 0 
I I_I ■ 1—1_I_I_ 

4 
16 
H,N,P/V 

H, N: reset 
P/V: set if BC —1=£0; reset otherwise 

Cycles: 
States: 
Flags: 

LDDR 
(DE) - (HL), DE - DE —1, HL - HL-1, BC - BC-1 
This 2-byte instruction transfers a byte of data from the memory location ad¬ 
dressed by the contents of the HL register pair to the memory location ad¬ 
dressed by the contents of the DE register pair. Then both registers, as well as 
the BC (byte counter), are decremented. If decrementing causes the BC to go 
to 0, the instruction is terminated. If BC is not 0, »he program counter is 
decremented by 2 and the instruction is repeated. Note: if BC is set to 0 prior 
to instruction execution, the instruction will loop through 64 K bytes. Also, 
interrupts will be recognized after each data transfer. 
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4 

For BC*0: 

Cycles: 5 
States: 21 

For BC=0: 

Cycles: 4 

States: 16 

Flags: H,N,P/V: reset 

CPI 
A-(HL), HL - HL + 1, BC - BC-1 
The contents of the memory location addressed by the HL register pair are 
compared with the contents of the Accumulator. In case of a true compare, a 
condition bit is set. Then HL is incremented and the byte counter (register 

pair BC) is decremented. 
I' l1 'VI I I I—I— 
1110 110 1 

—j . i i_1 1 I—i— 

Cycles: 
States: 
Flags: 

4 
16 
S,Z,H,N,P/V 

S: set if result is negative; reset otherwise 
Z: set if A=(HL); reset otherwise 
H: set if no borrow from bit 4; reset otherwise 

N: set 
P/V: set if BC —1*0; reset otherwise 

CPIR 
A —(HL), HL - HL + 1, BC - BC-1 
The contents of the memory location addressed by the HL register are com¬ 
pared with the contents of the Accumulator. In case of a true compare, a con¬ 
dition bit is set. The HL is incremented and the BC is decremented. If 
decrementing causes the BC to go to 0 or if A = (HL), the instruction is ter¬ 
minated. If BC is not 0 and if A* (HL), the program counter is decremented 
by two, and the instruction is repeated. Note: if BC is set to 0 before instruc¬ 
tion execution, the instruction will loop through 64 K bytes, if no match is 
found. Also, interrupts will be recognized after each data comparison. 

—i—i—i—I l "" l—l— 
1110 110 1 

* «_» ■ ■_i_j_ 

—i—i—i—i—i—i—i- 

1 0 1 1 0 0 0 1 
—I—I—I—I—I—I—I— 

For BC=£0 and A*(HL): 

Cycles: 5 

States: 21 

For BC=0 or A = (HL): 

Cycles: 4 
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States: 16 

Flags: S,Z,H,N,P/V 

S: set if result is negative; reset otherwise 

Z: set if A = (HL); reset otherwise 
H: set if no borrow from bit 4; reset otherwise 
N: set 

P/V: set if BC—1*0; reset otherwise 

CPD 
A—(HL), HL - HL-1, BC - BC-1 
The contents of the memory location addressed by the HL register pair are 
compared with the contents of the Accumulator. In case of a true compare a 
condition bit is set. The HL and the BC are decremented. 

Cycles: 
States: 

Flags: s,z,h,n,p/v 

S: set if result is negative; reset otherwise 
Z: set if A = (HL); reset otherwise 
H: set if no borrow from bit 4; reset otherwise 
N: set 
P/V: set if BC —1*0; reset otherwise 

CPDR 
A —(HL), HL - HL-1, BC - BC-1 
The contents of the memory location addressed by the HL register pair are 
compared with the contents of the Accumulator. In case of a true compare a 
condition bit is set. The HL and BC register pairs are decremented. If 
decrementing causes the BC to go to 0 or if A = (HL), the instruction is ter¬ 
minated. If BC is not 0 and A* (HL), the program counter is decremented by 
2 and the instruction is repeated. Note: if BC is set to 0 prior to instruction ex¬ 
ecution, the instruction will loop through 64 K bytes if no match is found. 
Also, interrupts will be recognized after each data comparison. 

For BC * 0 and A * (HL): 

Cycles: 5 
States: 21 

For BC = 0 or A=(HL): 

Cycles: 4 
States: 16 

Flags: S,Z,H,N,P/V 

S: set if result is negative; reset otherwise 
Z: set if A“(HL); reset otherwise 
H: set if no borrow from bit 4; reset otherwise 
N: set 
P/V: set if BC —1*0; reset otherwise 
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EIGHT-BIT ARITHMETIC AND LOGICAL GROUP 

ADD A, r 
A - A+r 
The contents of register r are added to the contents of the Accumulator, and 
the result is stored in the Accumulator. 

—i-1-1-1-1-1-1-1 

1 0 0 0 0 —-r-H 
_i_i_t ii_i—i—I 

Cycles: 1 
States: 4 
Flags: S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 

Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 

C: set if carry from bit 7; reset otherwise 
P/V: set if overflow; reset otherwise 

ADD A, n 
A — A+n 
The integer n is added to the contents of the Accumulator, and the results are 
stored in the Accumulator. 

1 
1 

_L 

—r 
1 
_L 

—r 
0 
_L 

-T 
0 
_L 

—r 

0 
_L 

—r 

1 
_L 

T- 

1 0 
_1_ 

—r r —r r —r r 1 
n - 

i I _L _L _L _L _1_ 

Cycles; 2 
States: 7 
Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
C: set if carry from bit 7; reset otherwise 
P/V: set if overflow; reset otherwise 

ADD A, (HL) 
A - A+(HL) 
The byte at the memory address specified by the contents of the HL register 
pair is added to the contents of the Accumulator, and the result is stored in 
the Accumulator. 

-I-1-1-1-1-1-1-1 

1 0 0 0 0 1 1 0 
_J—I—I—' 1 I 1 1 

Cycles: 2 
States: 7 
Flags: S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
C: set if carry from bit 7; reset otherwise 
P/V: set if overflow; reset otherwise 
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ADD A, (IX+d) 
A - A+(IX+d) 
The contents of the Index Register IX are added to a displacement d to point 
to an address in memory. The contents of this address are then added to the 
contents of the Accumulator, and the result is stored in the Accumulator. 

Cycles: 5 
States: 19 
Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
C: set if carry from bit 7; reset otherwise 
P/V: set if overflow; reset otherwise 

ADD A, (IY+d) 
A - A+(IY-f d) 
The contents of the Index Register IY are added to a displacement d to point 
to an address in memory. The contents of this address are then added to the 
contents of the Accumulator, and the result is stored in the Accumulator. 

Cycles: 5 
States: 19 
Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: set 
C: set if carry from bit 7; reset otherwise 
P/V: set if overflow; reset otherwise 
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ADC A, s 
A - A+s+CY 
The s operand is any of r, n, (HL), (IX+d), or (IY+d) as defined for the 
analogous ADD instruction. These various possible opcode operand com¬ 
binations are assembled in the object code as follows: 

ADC A, r 
ADC A, n 

ADC A, (HL) 

ADC A, (IX+d) 

ADC A, (IY+d) 

The s operand, along with the Carry Flag ("C" in the F register) is added to 
the contents of the Accumulator, and the result is stored in the Accumulator. 

Instruction 

ADC A, r 
ADC A, n 
ADC A, (HL) 
ADC A, (IX+d) 
ADC A, (IY+d) 

Cycles 

1 
2 
2 
5 
5 

States 

4 
7 
7 

19 
19 

Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
C: set if carry from bit 7; reset otherwise 
P/V: set if overflow; reset otherwise 
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SUBs 
A — A—s 
The s operand is subtracted from the contents of the Accumulator, and the 
result is stored in the Accumulator. 

SUB r 

SUB n 

SUB (HL) 

SUB (IX+d) 

SUB (IY+d) 

Instruction Cycles States 
SUB r 1 4 
SUB n 2 7 
SUB (HL) 2 7 
SUB (IX+d) 5 19 
SUB (IY+d) 5 19 

Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 

H: set if no borrow from bit 4; reset otherwise 
N: set 
C: set if no borrow; reset otherwise 
P/V: set if overflow; reset otherwise 
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SBC A, s 
A - A-s-CY 

The s operand, along with the Carry Flag ("C" in the F register) is subtracted 
from the contents of the Accumulator, and the result is stored in the 
Accumulator. 

SBC A, r 

SBC A, n 

SBC A, (HL) 

SBC A,(IX+d) 

SBC A, (IY+d) 

Instruction Cycles States 

SBC A, r 1 4 
SBC A, n 2 7 
SBC A, (HL) 2 7 
SBC A, (IX+d) 5 19 
SBC A, (IY+d) 5 19 

Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if no borrow from bit 4; reset otherwise 
N: set 
C: set if no borrow; reset otherwise 
P/V: set if overflow; reset otherwise 

THE Z&0 MICROPROCESSOR 53 

Copyrighted material 



AND s 
A — s 
A logical AND operation, bit by bit, is performed between the byte specified 

by the s operand and the byte contained in the Accumulator; the result is 
stored in the Accumulator. 

ANDr 

AND n 

AND (HL) 

AND(IX-fd) 

ANDUY+d) 

Instruction Cycles States 

ANDr 1 4 
AND n 2 7 
AND (HL) 2 7 
AND (IX+d) 5 19 
AND (IX+d) 5 19 

Flags: S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set 
N: reset 
C: reset 
P/V: set if parity even; reset otherwise 
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ORs 
A — Avs 
A logical OR operation, bit by bit, is performed between the byte specified 

by the s operand and the byte contained in the Accumulator; the result is 
stored in the Accumulator. 

ORr 

ORn 

OR(HL) 

OR(IX-fd) 

OR(IY+d) 

Instruction Cycles States 

ORr 
ORn 
OR (HL) 
OR (IX+d) 
OR (IY+d) 

1 
2 
2 
5 
5 

4 
7 
7 

19 
19 

Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 

H: set 
N: reset 

C: reset 
P/V: set if parity even; reset otherwise 
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XORs 
A — Aes 
A logical exclusive-OR operation, bit by bit, is performed between the byte 
specified by the s operand and the byte contained in the Accumulator; the 
result is stored in the Accumulator. 

XORr 

XORn 

XOR (HL) 

XOR (IX+d) 

XOR (IY+d) 

1 0 0 1 

1 1 1 0 1 1 0 

■ ■ T 
1 

_L 

—r 
0 
_L 

—r 
1 
_L 

—r 
0 
_L 

-r 
1 
_L 

—r 

1 
_L 

-r 
1 
_L 

0 

r 

1 
_L 

r 
1 
_L 

r 
0 
_L 

r 
1 
_L 

r 
1 
_L 

r 
1 
_L 

r 
0 
_L 

i 

r 

1 
_L 

r 
0 
_L 

r 

1 
_L 

r 
0 
_L 

r 
1 
_L 

r 
1 
_L 

r 
1 
_L 0 

rz 
—r r —r 

. A _ 
—r r —r 

zi 

i ; , , ■ , , . i 

r 

1 
_L 

—r 

1 
_L 

r 
1 

_L 

r 
1 

_L 

r 
1 

_L 

r 
1 
_L 

r 
0 
_L 

1 

—r 
1 

_L 

—r 
0 
_L 

—r 

1 
_L 

r 
0 
_L 

r 
1 

_L 

r 
1 

_L 

—r 
1 

_L 
0 

r r r —r 
. A _ 

—r r r 

_L T 7 ' U 
_L 7 T T rl 

Instruction 

XORr 

Cycles 

1 

States 

4 
XORn 

XOR (HL) 
XOR (IX+d) 
XOR (IY+d) 

2 7 
2 7 
5 19 
5 19 

Flags; S,Z, H, N, C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result if 0; reset otherwise 
H: set 
N: reset 
C; reset 
P/V; set if parity even; reset otherwise 
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CPs 
A—s 

The contents of the s operand are compared with the contents of the Ac¬ 
cumulator. If there is a true compare, a flag is set. 

CP r 

CP n 

CP (HL) 

CP (IX+d) 

CP (IY+d) 

Instruction Cycles States 

CP r 14 
CP n 2 7 
CP (HL) 2 7 
CP (IX+ d) 5 19 
CP (IY+d) 5 19 

Flags: MUHCP/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if no borrow from bit 4; reset otherwise 
N: set 
C: set if no borrow; reset otherwise 
P/V: set if overflow; reset otherwise 
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INC r 
r — r+1 
Register r is incremented. 

—i—i—i—i—i—i—n 
0 0--r—- 1 0 0 
_i_i_i_i_i_i_i_ 

Cycles: 1 
States: 4 
Flags: S,Z,H,N,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
P/V: set if r was 7FH before operation; reset otherwise 

INC (HL) 
(HL) - (HL) + 1 
The byte contained in the address specified by the contents of the HL register 
pair is incremented. 

—i r i —i—iiii 
0 0 110 10 0 
_I_I_L_J_L_l_I_ 

Cycles: 3 

States: 11 
Flags: S,Z,H,N(P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
P/V: set if (HL) was 7FH before operation; reset otherwise 

INC (IX+d) 
(IX + d) - (IX + d) + l 
The contents of the Index Register IX are added to a two's complement 
displacement integer d to point to an address in memory. The contents of this 
address are then incremented. 

Cycles: 
States: 
Flags: 

23 
S, Z, H, N, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
P/V: set if (IX+d) was 7FH before operation; reset otherwise 

INC (IY+d) 
(IY+d) - (IY+d)+l 
The contents of the Index Register IY are added to a two's complement 
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displacement integer d to point to an address in memory. The contents of this 
address are then incremented. 

Cycles: 
States: 
Flags: 

23 
S,Z,H,N,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry from bit 3; reset otherwise 
N: reset 
P/V: set if (IY-fd) was 7FH before operation; reset otherwise 

DEC m 
m — m-1 

Instruction Cycles States 

DEC r 1 4 
DEC (HL) 3 11 
DEC (IX+d) 6 23 
DEC (IY+d) 6 23 

Flags: S,Z,H,N,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if no borrow from bit 4; reset otherwise 
N: set 
P/V: set if m was 80H before operation; reset otherwise 
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GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

CPL _ 
A — A 
Contents of the Accumulator are inverted (l's complement). 

Cycles: 1 
States: 4 
Flags: H, N 

H: set 
N: set 

NEG 
A - 0—A 
The contents of the Accumulator are negated (two's complement). This is the 
same as subtracting the contents of the Accumulator from 0. 

Cycles: 2 
States: 8 
Flags: S,Z, H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if no borrow from bit 4; reset otherwise 
N: set 
C: set if Accumulator was not 00H before operation; reset other¬ 

wise 
P/V: set if Accumulator was 80H before operation; reset otherwise 

CCF _ 
CY - CY 
The C flag in the F register is inverted. 

Cycles: 1 
States: 4 
Flags: H,N,C 

H: previous carry will be copied 
N: reset 
C: set if CY was 0 before operation; reset otherwise 

SCF 
CY - 1 
The C flag in the F register is set. 

Cycles: 1 
States: 4 
Flags: H,N,C 
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NOP 

H: reset 
N: reset 
C: set 

The central processor performs no operation during this machine cycle. 

-1—l—l—i—i i i | 
00000000 
_I_I_I I I_I_I_ 

Cycles: 1 
States: 4 
Flags: none 

DAA 

This instruction conditionally adjusts the Accumulator for BCD addition and 
subtraction operations. For addition (ADD, ADC, INC) or subtraction (SUB, 
SBC, DEC, NEG), the following table indicates the operation performed: 

OPERATION 

C 
BEFORE 
DAA 

HEX 
VALUE 
IN 
UPPER 
DIGIT 
(bit 
7-4) 

U 
BEFORE 
DAA 

HEX 
VALUE 
IN 
LOWER 
DIGIT 
(bit 
3-0) 

NUMBER 
ADDED 
TO 
BYTE 

C 
AFTER 
DAA 

0 0-9 0 0-9 00 0 
0 0-8 0 A-F 06 0 
0 0-9 1 0-3 06 0 

ADD 0 A-F 0 0-9 60 1 
ADC 0 9-F 0 A-F 66 1 
INC 0 A-F 1 0-3 66 1 

1 0-2 0 0-9 60 1 
1 0-2 0 A-F 66 1 
1 0-3 1 0-3 66 1 

SUB 0 0-9 0 0-9 00 0 
SBC 0 0-8 1 6-F FA 0 
DEC 1 7-F 0 0-9 A0 1 
NEG 1 6-F 1 6-F 9A 1 

M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00 

Cycles: 1 
States: 4 
Flags: S,Z,H,C,P/V 

S: set if most significant bit of Accumulator is 1 after operation; 
reset otherwise 

Z: set if Accumulator is 0 after operation; reset otherwise 
H: see instruction 
C: see instruction 
P/V: set if Accumulator is even parity after operation; reset other 

wise 
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62 THE Z60 MICROPROCESSOR 

HALT 

The HALT instruction suspends the central processor operation until a subse¬ 

quent interrupt or reset is received. While in the halt state, the processor will 
execute NOPs to maintain memory refresh logic. 

0 1110 110 
-1-1-1_I-1_I_!_I 

Cycles: 1 
States: 4 
Flags: none 

DI 
IFF - 0 

DI disables the maskable interrupt by resetting the interrupt enable flip-flops 
(1FF1 and IFF2). Note: this instruction disables the maskable interrupt during 
its execution. 

-1-1-1-1—l—I—l- 
11110 0 11 

_i_I_l_i—i—i—i— 

Cycles: 1 
States: 4 
Flags: none 

El 
IFF - 1 
El enables the maskable interrupt by setting the interrupt enable flip-flops 
(IFF1 and IFF2). Note: this instruction disables the maskable interrupt during 
its execution. 

—i—i—i—i—i—i—i— 

111110 11 
—i—i—i—i_i i. i 

Cycles: 1 

States: 4 
Flags: none 

1M0 

The IM 0 instruction sets interrupt mode 0. In this mode the interrupting 
device can insert any instruction on the data bus and allow the central pro¬ 
cessor to execute it. 

Cycles: 2 
States: 8 
Flags: none 

IM 1 

The IM 1 instruction sets interrupt mode 1. In this mode the processor will 
respond to an interrupt by executing a restart of location 0038H. 
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Cycles: 
States: 
Flags: 

2 
8 
none 

IM 2 

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call 
to any location in memory. With this mode, the central processor forms a 
16-bit memory address. The upper 8 bits are the contents of the Interrupt 

States: 8 
Flags: none 

SIXTEEN-BIT ARITHMETIC GROUP 

ADD HL, ss 
HL - HL+ss 
The contents of register pair ss are added to the contents of register pair HL 
and the result is stored in HL. 

—I—l—l-1—l—l—l— 

0 0 s s 1 0 0 1 
_i. j_i .. i .j_i i 

Cycles: 3 
States: 11 
Flags: H,N,C 

H: set if carry out of bit 11; reset otherwise 
N: reset 

C: set if carry from bit 15; reset otherwise 

ADC HL, ss 
HL - HL+ss+CY 
The contents of register pair ss are added with the Carry Flag to the contents 
of the register pair HL, and the result is stored in HL. 

Cycles: 
States: 
Flags: 

1 —r 1 1 —r —r -r 

1 1 1 0 1 1 0 1 
_L _L _1_L _L _L _L 

r r i r r r r 
0 1 s s 1 0 1 0 

i _L _1_L _L _L _L 
15 
S, Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if carry out of bit 11; reset otherwise 
N: reset 
C: set if carry from bit 15; reset otherwise 
P/V: set if overflow; reset otherwise 

THE Z80 MICROPROCESSOR 63 

Copyrighted material 



SBC HL, ss 
HL - HL-ss-CY 
The contents of the register pair ss and the Carry Flag are subtracted from the 
contents of register pair HL, and the result is stored in HL. 

Cycles: 
States: 
Flags: S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: set if no borrow from bit 12; reset otherwise 
N: set 
C: set if no borrow; reset otherwise 
P/V: set if overflow; reset otherwise 

ADD IX, pp 
IX - IX+pp 
The contents of register pair pp are added to the contents of the Index 
Register IX, and the results are stored in IX. 

Cycles: 
States: 
Flags: H,N,C 

H: set if carry out of bit 11; reset otherwise 
N: reset 
C: set if carry from bit 15; reset otherwise 

ADD IY, it 

IY - IY+rr 
The contents of register pair rr are added to the contents of Index Register IY, 
and the result is stored in IY, 

Cycles: 
States: 
Flags: 

15 
H,N,C 

H: set if carry out of bit 11; reset otherwise 
N: reset 
C: set if carry from bit 15; reset otherwise 

INC ss 
ss — ss+1 
The contents of register pair ss are incremented. 

0 0 S S 0 0 1 1 
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Cycles: 1 

States: 6 
Flags: none 

INC IX 
IX *- IX + 1 
The contents of the Index Register IX are incremented. 

-1—I—I-1-1-1-1— 
110 1110 1 

_i_i_i_i_i_« i 

Cycles: 2 
States: 10 
Flags: none 

—I-1-1-1-I-1-1— 

0 0 1 0 0 0 1 1 
—i—i—i—i—i_i_i_ 

INC IY 
IY - IY+1 

Flags: none 

DEC ss 
ss — ss—1 
The contents of register pair ss are decremented. 

-1-1-1-1-1-1-1— 

0 0 S S 1 0 1 1 
—i-1—i—i_i_i_i  

Cycles: 1 
States: 6 
Flags: none 

DEC IX 
IX - IX-1 
The contents of the Index Register IX are decremented. 

Cycles: 2 
States: 10 
Flags: none 

I —r -T —r —r —r —r 1 
1 1 0 1 1 1 0 1 

_L _L _L _L _L _L _L 

(T 0 y o" r r 1 
_L _L _L _L _L _L _L 

DEC IY 
IY - IY—1 
The contents of the Index Register IY are decremented. 

-r—t “i" i—i i i- 

1111110 1 
—I—I—l_I_l_l_I_ 

—r—r n—i—r—i—i—i 
0 0 10 10 11 

—i—i—i - j.... j_i_i_I 
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Cycles: 
States: 
Flags: 

2 
10 
none 

ROTATE AND SHIFT GROUP 

RLCA 
A 

The contents of the Accumulator are rotated left. The content of bit 7 is 
copied into the Carry Flag, and also into bit 0. 

-1-1-1-1-1-1—i— 

0 0 0 0 0 1 1 1 
i ■_i_i_i_i_i_ 

Cycles: 1 
States: 4 
Flags: H, N, C 

H: reset 

N: reset 
C: data from bit 7 of Accumulator 

RLA 
A 

The contents of the Accumulator are rotated left. The content of bit 7 
copied into the Carry Flag, and the previous content of the Carry Flag 
copied into bit 0. 

-1—i-1-1—i-1-1- 

0 0 0 1 0 1 1 1 
_1— - I_I_I_L_J_I_ 

Cycles: 1 

States: 4 
Flags: H, N, C 

H: reset 
N: reset 
C: data from bit 7 of Accumulator. 

RRCA 
A 

The contents of the Accumulator are rotated right. The content of bit 0 is 
copied into bit 7 and also into the Carry Flag. 

-1-1-1-1-1-1-1- 
0 0 0 0 1 1 1 1 
_i_i_i-1-1-1-1— 

Cycles: 1 
States: 4 
Flags: H, N, C 

H: reset 
N: reset 
C: data from bit 0 of Accumulator. 

RRA 
A 

The contents of the Accumulator are rotated right. The content of bit 0 is 
copied into the Carry Flag, and the previous content of the Carry Flag is 
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copied into bit 7. 

Cycles: 1 
States: 4 
Flags: H,N,C 

H: reset 
N: reset 
C: data from bit 0 of Accumulator. 

RLCr 
r 

The 8-bit contents of register r are rotated left. The content of bit 7 is copied 
into the Carry Flag and also into bit 0. 

Cycles: 2 
States: 8 
Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 
C: data from bit 7 of source register 
P/V: set if parity even; reset otherwise 

RLC (HL) 
(HL) 

The contents of the memory address specified by the contents of register pair 
HL are rotated left. The content of bit 7 is copied into the Carry Flag and also 
into bit 0. 

Cycles: 4 
States: 15 
Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 
C: data from bit 7 of source register 
P/V: set if parity even; reset otherwise 

RLC (IX+d) 
(IX+d) 

The contents of the memory address, specified by the sum of the contents of 
the Index Register IX and a two's complement displacement integer d, are 
rotated left. The content of bit 7 is copied into the Carry Flag and also into bit 
0. 
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4 

Cycles: 
States: 
Flags: 

23 
S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 
C: data from bit 7 of source register 
P/V: set if parity even; reset otherwise 

RLC (IY+d) 
(lY+d) 

The contents of the memory address, specified by the sum of the contents of 
the Index Register IY and a two's complement displacement integer d, are 
rotated left. The content of bit 7 is copied into the Carry Flag and also into bit 
0. 

Cycles: 
States: 
Flags: 

23 
S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 
C: data from bit 7 of source register 
P/V: set if parity even; reset otherwise 

RL m 
m 

The contents of the m operand are rotated left. The content of bit 7 is copied 
into the Carry Flag and the previous content of the Carry Flag is copied into 
bit 0. 
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RRCm 

RLr 

RL (HL) 

RL (IX+d) 

RL (IY+d) 

Instruction Cycles States 

RLr 2 8 
RL (HL) 4 15 
RL (IX+d) 6 23 
RL (IY+d) 6 23 

Flags: S, Z, H, N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 
C: data from bit 7 of source register 
P/V: set if parity even; reset otherwise 

m 

The contents of the operand m are rotated right. The content of bit 0 is copied 
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RRC (IY + d) 

Instruction Cycles States 

RRC r 2 8 
RRC (HL) 4 15 
RRC (IX+d) 6 23 
RRC (IY + d) 6 23 

Flags: S,Z,H,N,C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 
C: data from bit 0 of source register 

P/V: set if parity even; reset otherwise 

RR m 
m 

The contents of operand m are rotated right. The content of bit 0 is copied in¬ 
to the Carry Flag, and the previous content of the Carry Flag is copied into 
bit 7. 

RR r 

RR(HL) 

RR (IX+d) 
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RR (IY+d) 

SLA m 

Instruction Cycles States 

RR r 2 8 
RR (HL) 4 15 
RR (IX+d) 6 23 
RR (IY+d) 6 23 

Flags; S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 

C: data from bit 0 of source register 

P/V: set if parity even; reset otherwise 

An arithmetic shift left is performed on the contents of operand m. Bit 0 is 
reset. The content of bit 7 is copied into the Carry Flag. 

SLAr 

SLA (HL) 

SLA (IX+d) 

THE Z80 MICROPROCESSOR 71 

Copyrighted material 



SLA (IY+d) 

Instruction Cycles States 

SLAr 2 8 
SLA (HL) 4 15 
SLA (IX+d) 6 23 
SLA (IY+d) 6 23 

Flags: S,Z,H,N, C,P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 

N: reset 
C: data from bit 7 
P/V: set if parity even; reset otherwise 

SRA m 

An arithmetic shift right is performed on the contents of operand m. The con¬ 
tent of bit 0 is copied into the Carry Flag, and the previous content of bit 7 is 
unchanged. 

SRA r 

SRA (HL) 

SRA (IX+d) 
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SRA (IY+d) 

Instruction Cycles States 

SRA r 2 8 
SRA (HL) 4 15 

SRA (IX+d) 6 23 

SRA (IY+d) 6 23 

Flags: S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H; reset 
N: reset 
C: data from bit 0 of source register 
P/V: set if parity even; reset otherwise 

SRL m 
m 

The contents of operand m are shifted right. The content of bit 0 is copied in¬ 
to the Carry Flag and bit 7 is reset. 

SRL r 

SRL (HL) 

SRL (IX+d) 
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SRL (IY+d) 

Instruction Cycles States 

SRL r 2 8 
SRL (HL) 4 15 
SRL (IX+d) 6 23 
SRL (IY+d) 6 23 

RLD 

Flags: S, Z, H, N, C, P/V 

S: set if result is negative; reset otherwise 
Z: set if result is 0; reset otherwise 
H: reset 
N: reset 
C: data from bit 0 of source register 
P/V: set if parity even; reset otherwise 

a[7^H I? <l|3 0|(HL) 

TiJrczr 
The contents of the low-order 4 bits of memory location (HL) are copied into 
the high-order 4 bits of that same memory location. The previous contents of 
those high-order 4 bits are copied into the low-order 4 bits of the Ac¬ 
cumulator, and the previous contents of the low-order 4 bits of the Ac¬ 
cumulator are copied into the low-order 4 bits of the memory location (HL). 
The contents of the high-order 4 bits of the Accumulator are unaffected. 

|—1-1—1-1-1—l l 1 
1110 110 1 
_1—1—1—1—1—1—1— 

I 1 1—r—1—1 i 1— 
c 0 110 1111 
^ —1—1—1—1—1_1_1_ 
18 
S,Z,H,N,P/V 

S: set if Accumulator is negative after operation; reset otherwise 
Z: set if Accumulator is 0 after operation; reset otherwise 
H: reset 
N: reset 
P/V: set if parity of Accumulator is even after operation; reset 

otherwise 

Cycles: 
States: 
Flags: 
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RRD 
nOtt 

A17 413 0 |7 413 0|(HU 

nizr 
The contents of the low-order 4 bits of memory location (HL) are copied into 
the low-order 4 bits of the Accumulator. The previous contents of the low- 
order 4 bits of the Accumulator are copied into the high-order 4 bits of loca¬ 
tion (HL), and the previous contents of the high-order 4 bits of (HL) are 
copied into the low-order 4 bits of (HL). The contents of the high-order 4 bits 
of the Accumulator are unaffected. 

Cycles: 
States: 
Flags: 

5 
18 

1 —r —r —r —r —r —r 

1 1 1 0 1 1 0 1 
_L _L _L _L _L _L _L 

I r r r r r r 
0 1 1 0 0 1 1 1 

_L _L _L _L _L —L i 

S,Z,H,N,P/V 

S: set if Accumulator is negative after operation; reset otherwise 
Z: set if Accumulator is 0 after operation; reset otherwise 
H: reset 
N: reset 
P/V: set if parity of Accumulator is even after operation; reset 

otherwise 

BIT SET, RESET AND TEST GROUP 

BIT b, r 
z - t; 
After execution of this instruction, the Z flag in the F register will contain the 

Flags: S,Z,H,N,P/V 

S: unknown 
Z: set if specified bit is 0; reset otherwise 

H: set 
N: reset 
P/V: unknown 

BIT b, (HL) 
Z - (HL)* 
After the execution of this instruction, the Z flag in the F register will contain 

AM 

Flags: S,Z, H,N,P/V 

S: unknown 
Z: set if specified bit is 0; reset otherwise 
H: set 
N: reset 
P/V: unknown 
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BIT b, (IX+d) 
Z - QX-fd)* 

After the execution of this instruction, the Z flag in the F register will contain 
the complement of the indicated bit within the contents of the memory loca¬ 
tion pointed to by the sum of the contents of register pair IX and the two's 
complement displacement integer d. 

Cycles: 
States: 
Flags: S,Z,H,N,P/V 

S: unknown 

Z: set if specified bit is 0; reset otherwise 
H: set 

N: reset 
P/V: unknown 

BIT b, (IY+d) 
Z - (IY+d)6 
After the execution of this instruction, the Z flag in the F register will contain 
the complement of the indicated bit within the contents of the memory loca¬ 
tion pointed to by the sum of the contents of register pair IY and the two's 
complement displacement integer d. 

Cycles: 5 
States: 20 
Flags: S,Z,H,N,P/V 

S: unknown 
Z: set if specified bit is 0; reset otherwise 
H: set 
N: reset 
P/V: unknown 

SET b, r 
r* — 1 
Bit b (any bit, 7 thru 0) in register r is set. 

Cycles: 2 
States: 8 
Flags: none 
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SET b, (HL) 

(HU - 1 
Bit b in the memory location addressed by the contents of register pair HL is 
set. 

.iiiii i l—| 
110 0 10 11 
_I_I_I—I_I_I_l 1 

T—l—l—l—I—l—l— 
1 1 —b--1 1 0 
_L_l_I_I-1_I_I_ 

Cycles: 4 
States: 15 
Flags: none 

SET b, (IX+d) 
(IX+d)6 - 1 
Bit b in the memory location addressed by the sum of the contents of the IX 

register pair and the two's complement displacement integer d is set. 

Cycles: 6 
States: 23 
Flags: none 

SET b, (IY+d) 

(IY+d)* - 1 
Bit b in the memory location addressed by the sum of the contents of the IY 
register pair and the two's complement displacement integer d is set. 

Cycles: 6 
States: 23 
Flags: none 
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RES b, m 
s» — 0 
Bit b in operand m is reset. 

RES b, r 

RES b, (HL) 

RES b, (IX+d) 

RES b, (IY + d) 

Instruction Cycles States 

RES b, r 4 8 
RES b, (HL) 4 15 

RES b, (IX+ d) 6 23 

RES b, (IY+d) 6 23 

Flags: none 

JUMP GROUP 

JP nn 
PC - nn 
Operand nn is loaded into register pair PC (program counter) and points to 
the address of the next program instruction to be executed. 
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Cycles: 3 
States: 10 
Flags: none 

JP cc, nn 
IF cc TRUE, PC - nn 
If condition cc is true, the instruction loads operand nn into register pair PC, 
and the program continues with the instruction beginning at address nn. If 
condition cc is false, the program counter is incremented as usual, and the 
program continues with the next sequential instruction. 

Cycles: 3 
States: 10 
Flags: none 

JRe 
PC - PC+e 
This instruction provides for unconditional branching to other segments of a 
program. The value of the displacement e is added to the PC and the next in¬ 
struction is fetched from the location designated by the new contents of the 
PC. This jump is measured from the address of the instruction opcode and 
has a range of —126 to +129 bytes. 

—,-,-1—|—|—|—|-1 

0 0 0 1 1 0 0 0 
_I_I_I_L II. .1—J 

—i—i—i—i—i—i—r 

--e-2- 
L_J_i_L_i_i_i_l 

Cycles: 3 
States: 12 
Flags: none 
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JR C,e 
If 0=0, continue 
If C-l, PC - PC+e 
This instruction provides for conditional branching to other segments of a 
program depending on the results of a test on the Carry Flag. If the flag is set, 
the value of the displacement e is added to the PC, and the next instruction is 
fetched from the location designated by the new contents of the PC. If the 
flag is reset the next instruction is taken from the location following this in¬ 
struction. 

If the condition is met: 

Cycles: 3 

States: 12 

If the condition is not met: 

Cycles: 2 
States: 7 

Flags: none 

JR NC, e 
If C=l, continue 
If C=0, PC - PC + e 
This instruction provides for conditional branching to other segments of a 
program depending on the results of a test on the Carry Flag. If the flag is 
reset, the value of the displacement e is added to the PC, and the next instruc¬ 
tion is fetched from the location designed by the new contents of the PC. If 
the flag is set, the next instruction to be executed is taken from the location 
following this instruction. 

If the condition is met: 

Cycles: 3 
States: 12 

If the condition is not met: 

Cycles: 2 
States: 7 

Flags: none 

JR Z, e 
If Z=0, continue 
If Z-l, PC - PC+e 
If the Zero Flag is set, the value of the displacement e is added to the PC and 
the next instruction is fetched from the location designated by the new con¬ 
tents of the PC. If the Zero Flag is reset, the next instruction to be executed is 
taken from the location following this instruction. 

0 

80 THE Z30 MICROPROCESSOR 

Copyrighted material 



—I—I—I—I—I—I—I— 
0 0 1 0 1 0 0 0 
—I_I_I_I_I_I_I_ 

-T~ “i—i 
_e_2— _ _ 

"~r— 

_L- i 
" U L 

-J_L_ , , , 

If the condition is met: 

Cycles: 3 
States: 12 

If the condition is not met: 

Cycles: 2 
States: 7 

Flags: none 

JR NZ, e 
If Z = l, continue 
If Z=0, PC - PC+e 
If the Zero Flag is reset, the value of the displacement e is added to the PC, 

and the next instruction is fetched from the location designated by the new 
contents of the PC. If the Zero Flag is set, the next instruction to be executed 
is taken from the location following this instruction. 

-1-I-I-1 I I I I 
0 0 1 0 0 0 0 0 
_I_I_I_I_I_I_I_ 

—i— nr"T 
-e-2— 

-nr- 
~r~ 1 

i i , -J_ 

If the condition is met: 

Cycles: 3 
States: 12 

If the condition is not met: 

Cycles: 2 

States: 7 

Flags: none 

JP (HL) 
PC - HL 
The PC is loaded with the contents of the HL register pair. The next instruc¬ 
tion is fetched from the location designated by the new contents of the PC. 

—i—i—i—i—i—i—r~l 
1110 10 0 1 

_L- J—J_I_I_I_I_ 

Cycles: 1 

States: 4 
Flags: none 

JP (IX) 
PC - IX 
The PC is loaded with the contents of the IX Register Pair. The next instruc¬ 
tion is fetched from the location designated by the new contents of the PC. 
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Cycles: 
States: 
Flags: 

2 
8 
none 

1— i— i— i—r —r i—r 

1 l 0 1 1 1 0 1 
L_ j_ J_ J_L _L J_L _1 

i 1 i r r i r 
l l 1 0 1 0 0 1 

i 1 J_L _L _ J_L 

JP (1Y) 
PC - IY 
The PC is loaded with the contents of the 1Y Register Pair. The next instruc¬ 
tion is fetched from the location designated by the new contents of the PC. 

I II | | I I” 
1111110 1 
_l_I_I_l_I_I_I_ 

—i—i—i—i—i—i—i— 
1110 10 0 1 

„  I_I_111_I l.-l 
2 
8 
none 

Cycles: 
States: 
Flags: 

DJNZ, e 

The B register is decremented, and if a non 0 value remains, the value of the 
displacement e is added to the PC. The next instruction is fetched from the 
location designated by the new contents of the PC. If the result of decrement¬ 
ing leaves B with a 0 value, the next instruction to be executed is taken from 
the location following this instruction. 

-1-1-1-1-1-1-1-1 

0 0 0 1 0 0 0 0 
—I—I—I_I_I_l_L 

—I—i—i—i—i—i—r 
- ■■ -■ 1 e-2- 
—i—i—i—i—i—i_i 

If B*0: 

Cycles: 3 
States: 13 

If B=0: 

Cycles: 2 
States: 8 

Flags: none 

CALL AND RETURN CROUP 

CALL nn 
(SP-1) - PC„, (SP-2) - PCLt PC - nn 
After pushing the current contents of the PC onto the top of the external 
memory stack, the operands nn are loaded into PC to point to the address in 
memory where the first opcode of a subroutine is to be fetched. Note: 
because this is a 3-byte instruction, the PC will have been incremented by 

three before the push is executed. 
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Cycles: 5 
States: 17 
Flags: none 

CALL cc, nn 

If cc TRUE: (SP-1) - PC„, (SP-2) - PC*, PC - nn 
If condition cc is true, this instruction pushes the current contents of the PC 
onto the top of the external memory stack, then loads the operands nn into 
PC to point to the address in memory where the first opcode of a subroutine 
is to be fetched. 

If cc is true: 

Cycles: 5 
States: 17 

If cc is false: 

Cycles: 3 
States: 10 

Flags: none 

RET 
PCt - (SP), PC„ - (SP+l) 
Control is returned to the original program flow by popping the previous 

contents of the PC off the top of the external memory stack, where they were 
pushed by the CALL instruction. On the following machine cycle, the central 
processor will fetch the next program opcode from the location in memory 
now pointed to by the PC. 

-1-1-1-1-1-1-1-1 
1 1 0 0 1 0 0 1 

I I_I_1 1_I_L_1 

Cycles: 3 
States: 10 
Flags: none 

RET cc 
If cc TRUE: PCt - (SP), PC„ - (SP + l) 
If condition cc is true, control is returned to the original program flow by 

popping the previous contents of the PC off the top of the external memory 
stack where they were pushed by the CALL instruction. On the following 
machine cycle, the central processor will fetch the next program opcode from 
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the location in memory now pointed to by the PC. If condition cc if false, the 
PC is simply incremented as usual, and the program continues with the next 
sequential instruction. 

r—r—i—i—i—i—i—i— 
1 1 ^—cc—►o 0 0 
.i .1 i,-, l—j—i—i— 

If cc is true: 

Cycles: 3 
States: 11 

If cc is false: 

Cycles: 1 
States: 5 

Flags: none 

RETI 
Return from interrupt 
This instruction is used at the end of an interrupt service routine to 

1. Restore the contents of the PC. 

2. Signal an I/O device that the interrupt routine has been completed. 

The RETI instruction facilitates the nesting of interrupts allowing higher 
priority devices to suspend service of lower priority service routines. This in¬ 
struction also resets the IFFl and IFF2 flip-flops. 

Cycles: 4 
States: 14 
Flags: none 

RETN 
Return from nonmaskable interrupt 
Used at the end of a service routine for a nonmaskable interrupt, the instruc¬ 
tion executes an unconditional return which functions identically to the RET 
instruction. Control is now returned to the original program flow; on the 
following machine cycle the central processor will fetch the next opcode from 
the location in memory now pointed to by the PC. Also, the state of IFF2 is 
copied back into IFFl to the state it had prior to the acceptance of the NMI. 

Cycles: 4 
States: 14 
Flags: none 

RSTp 
(SP-1) - PC„, (SP-2) - PC*, PC„ - 0, PC* - p 
The current PC contents are pushed onto the external memory stack, and the 
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page zero memory location given by operand p is loaded into the PC. Pro¬ 
gram execution then begins with the opcode in the address now pointed to by 
PC. The restart instruction allows for a jump to one of 8 addresses as shown 

in the table below. The operand p is assembled into the object code using the 
corresponding t state. 

COH 000 
08H 001 
10H 010 
18H 011 
20H 100 
28H 101 
30H iio 
38H in 

Cycles: 3 
States: 11 
Flags: none 

INPUT AND OUTPUT GROUP 

IN A, (n) 
A — (n) 
The operand n is placed on the bottom half of the address bus to select the 
I/O device at one of 256 possible ports. The contents of the Accumulator also 
appear on the top half of the address bus at this time. One byte from the 
selected port is then placed on the data bus and written into the Accumulator 
in the central processor. 

Cycles: 3 
States: 11 
Flags: none 

IN r, (C) 
r — (C) 
The contents of register C are placed on the bottom half of the address bus to 
select the I/O device at one of 256 possible ports. The contents of register B 
are placed on the top half of the address bus at this time. One byte from the 
selected port is then placed on the data bus and written into register r in the 

central processor. 

Cycles: 3 
States: 12 
Flags: S, Z, H, N, P/V 
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S: set if input data is negative; reset otherwise 
Z: set if input data is 0; reset otherwise 
H: reset 
N: reset 
P/V: set if parity is even; reset otherwise 

INI 
(HL) - (C), B - B-l, HL - HL+1 
The contents of register C are placed on the bottom half of the address bus to 
select the I/O device at one of 256 possible ports. Register B may be used as a 
byte counter, and its contents are placed on the top half of the address bus. 
One byte from the selected port is then placed on the data bus and written to 
the central processor. The contents of the HL register pair are then placed on 
the address bus, and the input byte is written into the corresponding location 
of memory. Finally, the byte counter is decremented, and register pair HL is 
decremented. 

Cycles; 4 
States: 16 
Flags: S,Z,H,N,P/V 

S: unknown 
Z: set if B —1 = 0; reset otherwise 
H: unknown 
N: set 
P/V: unknown 

INIR 
(HL) - (C), B - B-l, HL - HL+1 
The contents of register C are placed on the bottom half of the address bus 
to select the I/O device at one of 256 possible ports. Register B is used as 
a byte counter, and its contents are placed on the top half of the address 
bus. One byte is selected and is placed on the data bus and written into the 
central processor. The contents of the HL register pair are placed on the 
address, and the input byte is written into the corresponding memory loca¬ 
tion. The byte counter is then decremented and the HL register pair is in¬ 
cremented. If decrementing causes B to go to 0, the instruction is ter¬ 
minated. If B is not 0, the PC is decremented by two and the instruction 
repeated. Interrupts will be recognized after each data transfer. 

If B*0: 

Cycles: 5 
States: 21 

If B=0: 

Cycles: 4 
States: 16 

Flags: S, Z,H,N,P/V 
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S: unknown 
Z: set 
H: unknown 

N: set 
P/V: unknown 

IND 
(HL) - (C), B - B—1, HL - HL-1 
The contents of register C are placed on the bottom half of the address bus 
to select the I/O device. Register B may be used as a byte counter, and its 
contents are placed on the top half of the address bus. One byte from the 
selected port is placed on the data bus and written to the central pro¬ 
cessor. The contents of the HL register pair are placed on the address 
bus, and the input byte is written into the corresponding memory location. 
Finally, the byte counter and register pair HL are decremented. 

Cycles: 
States: 
Flags: 

4 
16 

1— 1— i— ”— 1— 1— T- 
1 1 1 0 1 1 0 1 
J_ J_ J_ J_ J_ J_ J_ 

1 n 1 1 1 1 1 
1 0 1 0 1 0 1 0 
_ J_ J_ 1 J_ J_ J_ 1 

S,Z, H,N,P/V 

S: unknown 
Z: set if B —1 = 0; reset otherwise 
H: unknown 
N: set 
P/V: unknown 

INDR 
(HL) - (C), B - B —1, HL - HL-1 
The contents of register C are placed on the bottom half of the address bus to 
select the I/O device. Register B is used as a byte counter, and its contents are 
placed on the top half of the address bus. One byte from the selected port is 
placed on the data bus and written to the central processor. The contents of 
the HL register pair are placed on the address bus and the input byte is writ¬ 
ten into the corresponding memory location. The HL register pair and the 
byte counter are then decremented. If decrementing causes B to go to 0, the 
instruction is terminated. If B is not 0, the PC is decremented by 2, and the in¬ 
struction is repeated. Interrupts will be recognized after each data transfer. 

Cycles: 5 
States: 21 

If B=0: 

Cycles: 4 
States: 16 

Flags: S,Z, H,N,P/V 

S: unknown 
Z: set 
H: unknown 
N: set 
P/V: unknown 
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OUT (n), A 
(n) — A 
The operand n is placed on the bottom half of the address bus to select the 
I/O device. The contents of the Accumulator appear on the top half of the 
address bus. Then the byte contained in the Accumulator is placed on the 
data bus and written into the selected peripheral device. 

Cycles: 3 
States: 11 
Flags: none 

“1-1-1-1-1-1-1— 
11010011 
—I-1-1-1-1_I_L_ 

-T" "T" —1-T" 
— n_ 

i —r~ “T- 

i i 

—» II1 1,1 

—i-, i - , _j_ _ 

OUT (C), r 
(C) — r 
The contents of register C are placed on the bottom half of the address bus to 
select the I/O device. The contents of register B are placed on the top half of 
the address bus. The byte contained in register r is placed on the data bus and 
written into the selected peripheral device. 

Cycles: 3 
States: 12 
Flags: none 

OUTI 
(C) - (HL), B - B—1, HL - HL+1 
The contents of the HL register pair are placed on the address bus to select a 
location in memory. The byte contained in this memory location is tem¬ 
porarily stored in the central processor. After the byte counter (B) is 
decremented, the contents of register C are placed on the bottom half of the 
address bus to select the I/O device. Register B may be used as a byte 

counter, and its decremented value is placed on the top half of the address 
bus. The byte to be output is placed on the data bus and written into the 
selected peripheral device. Finally, the register pair HL is incremented. 

4 
16 
S,Z,H,N,P/V 

S: unknown 

Z: set if B —1=0; reset otherwise 
H: unknown 
N: set 
P/V: unknown 

Cycles: 
States: 
Flags: 
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OTIR 
(C) - (HU B - B-l, HL - HL + 1 
The contents of the HL register pair are placed on the address bus to select a 
location in memory. The byte contained in this memory location is tem¬ 
porarily stored in the central processor. After the byte counter (B) is 
decremented, the contents of register C are placed on the bottom half of the 
address bus to select the I/O device. Register B may be used as a byte 

counter, and its decremented value is placed on the top half of the address 
bus at this time. The byte to be output is placed on the data bus and written 
into the selected peripheral device. Then register pair HL is incremented. If 
the decremented B register is not 0, the PC is decremented by two and the in¬ 
struction is repeated. If B is 0, the instruction is terminated. Interrupts will be 
recognized after each data transfer. 

If B*0: 

—r -T —r I —r T —r 1 1 

i 1 1 0 1 1 0 1 
_L _L _L _L _L _L _L 

r r -r r —r —r —r 

1 0 1 1 0 0 1 1 
_L _L _L _L _L _L _L 

Cycles: 5 
States: 21 

If B=0: 

Cycles: 4 
States: 16 

Flags: S,Z,H,N,P/V 

S: unknown 
Z: set 
H: unknown 
N: set 
P/V: unknown 

OUTD 
(C) - (HL), B - B-l, HL - HL—1 
The contents of the HL register pair are placed on the address bus to select a 
location in memory. The byte contained in this memory location is tem¬ 
porarily stored in the central processor. Then, after the byte counter (B) is 
decremented, the contents of register C are placed on the bottom half of the 
address bus to select the I/O device. Register B may be used as a byte 
counter, and its decremented value is placed on the top half of the address 
bus. The byte to be output is placed on the data bus written into the selected 
peripheral device. Finally, the register pair HL is decremented. 

Cycles: 

States: 
Flags: 

16 
S,Z,H,N,P/V 

$: unknown 
Z: set if B —1=0; reset otherwise 
H: unknown 
N: set 
P/V: unknown 
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OTDR 
(C) - (HL), B - B-l, HL - HL-1 
The contents of the HL register pair are placed on the address bus to select a 

location in memory. The byte contained in this memory location is tem¬ 
porarily stored in central processors. Then, after the byte counter (B) is 
decremented, the contents of register C are placed on the bottom half of the 
address bus to select the I/O device. Register B may be used as a byte 
counter, and its decremented value is placed on the top half of the address 
bus. The byte to be output is then placed on the data bus and written into the 
selected peripheral device. Register pair HL is then decremented. If the 
decremented B register is not 0, the PC is decremented by 2, and the instruc¬ 
tion is repeated. If register B is 0, then the instruction is terminated. Inter¬ 
rupts will be recognized after each data transfer. 

1 
_L 

—r 
1 

_L_ 

—r 
1 
_L 

—r 
0 
_L 

—r 
1 
_L 

—r 
1 

_L 

—T 
0 
_L 

1 

r r r r r r r 
1 0 1 1 1 0 1 1 

i _L _L _L —L _L _L 

If B^fcO: 

Cycles: 5 
States: 21 

If B = 0: 

Cycles: 4 
States: 16 

Flags: S,Z, H, N, P/V 

S: unknown 
Z: set 
H: unknown 
N: set 

P/V: unknown 
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CHAPTER 4 
BUILD YOUR OWN 
COMPUTER—Start With 
the Basics 

The computer to be built from the design described in this book is called ZAP, for 
Z80 Applications Processor. Building a computer from scratch is both educational and 
utilitarian (and it saves money). I explain each section of the construction process in 
detail. Ideally, each step should be tested before proceeding on to the next stage. While 
this is not possible in all cases, there is a beneficial side effect in taking this route. Often 
good designs fail to work because the level of construction is beyond the ability of the 
builder. 

I've made the assumption that most hobbyists do not possess sophisticated test 
equipment, such as oscilloscopes or logic analyzers, and as a result. I've kept testing 
procedures as simple as possible. By dividing ZAP into logical milestones for checkout 
and test (and using proven components), problems can be identified at earlier stages 
and rectified more easily. 

The initial implementation of ZAP will constitute a minimum operable configura¬ 
tion. It is important that this works before you attempt to add any of the optional pe¬ 
ripherals. Every effort will be made to familiarize the reader with the components of 
each section and the philosophy of design. While it is necessary to assemble all the 
components of this minimum configuration completely in order to check proper central 
processor operation, comprehensive subassembly pretesting should (I hope) correct 
any wiring errors. 

The basic ZAP is divided into four major subassemblies: Z80 busing and control, 
memory and I/O chip select decoding, memory, and input/output registers. These 
major divisions are further divided at the component level. Schematics include a com¬ 
plete explanation of their logical function, and test procedures are outlined after each 

construction presentation. 

The Processor 

Figure 4.1 is a detailed block diagram of the basic ZAP computer. 

I. Z80 Busing and Control Logic 

A. Clock Generation 

The ZAP computer runs on a 2.5 MHz TTL clock. Unlike the 8080A, the 
Z80 requires only a single-phase clock and can be driven from DC to 
2.5 MHz (the Z80A runs to 4 MHz). Figure 4.2 illustrates the basic timing 
cycle of the computer. > 

Each basic operation (M*) of the computer is completed in three or six 
clock periods. Figure 4.2 shows a typical instruction cycle which consists of 
three machine cycles: fetch, memory read, and memory write. After the op¬ 
code of the instruction is fetched during Ml, the subsequent cycles move the 
data between memory and the central processor. 

Figures 4.3a and 4.3b illustrate two possible clock designs for the Z80. Both 

clock circuits have a 330 ohm pull-up to +5 V. This will satisfy both the AC 
and DC clock signal requirements, but it is best to use a separate inverter gate 
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section to drive the pull-up whatever the oscillation technique. 
The crystal controlled circuit of figure 4.3a is preferred if consistent execu¬ 

tion time is to be maintained. Thus, the circuit of figure 4.3b, though other¬ 
wise acceptable, should be avoided if the computer is to be used as an event 
timer. It can serve a very useful purpose in the development stages, however, 
by allowing the user to slow the clock down (by increasing the values of R 
and C) to a rate where it is possible to directly monitor the central processor 
operation. Should it ever be necessary to single-step the clock, the circuit in 
figure 4.4 should be used. Given the multiple clock cycles necessary to ex¬ 
ecute a single instruction, it would take a lot of button pushes to follow a pro¬ 
gram through execution. 

A much easier diagnostic method would be to use an instruction single¬ 
stepping circuit. The circuit, shown in figure 4.5, is not part of the finished 
schematic of ZAP because it is necessary only if the builder has a problem 
and needs to follow the execution of a program instruction by instruction. 
This single-stepping function is accomplished by using the control signals 
generated by the Z80 during program execution. The two particular signals 
of concern are Ml and WAIT. Ml is an output, and WAIT is an input. 
As shown in figure 4.6, Ml goes to a logic 0 level at the beginning of every 
instruction fetch cycle. Ml signifies that the computer has completed one in¬ 
struction and is starting on the next. The objective is to stop the microproces¬ 
sor before it executes this next instruction. 

The WAIT input to the Z80 does just that. A logic 0 level applied to this in¬ 
put will suspend the program execution of the computer and indefinitely hold 
it in the Ml cycle. During T2, the central processor samples the WAIT in¬ 
put line with the trailing edge of the clock. If, at this time, WAIT is at a 
logic 0 level, an additional wait state will be entered, and the line will be 
sampled again. The central processor will hang in this mode until WAIT is 
raised to a logic 1. It should be noted that this is not a computer halt com¬ 
mand. 

The real purpose behind these signals is to allow the relatively slow mem¬ 
ory and peripherals to be used with a very fast central processor. Extra wait 
states should be inserted only when necessary for the central processor to ac¬ 
cess these devices. The effect is to synchronize the timing between the central 
processor and its I/O devices. The circuit of figure 4.5 allows us to control 
the WAIT state and to execute only one instruction with each press of the 
button. The output at IC1, pin 8 (the WAIT input) is normally low, causing 
an indefinite wait. When the button is pushed, a single debounced pulse 
clocks IC 2, which is a D-type flip-flop. The duration of this pulse (the time 
you hold the button down) is irrelevant, because the flip-flop is edge trig¬ 
gered and is only concerned with the leading edge. Pressing the button sets 
IC 2 and raises the WAIT line. No longer told to wait, the central processor 
executes the instruction at full clock speed. As it is about to start the next in¬ 
struction fetch cycle. Ml goes low as before, and triggers the one-shot. 
When it fires, IC 3 resets IC 2 and returns the central processor to a wait con¬ 
dition until the next time the button is pushed. 

The single-step feature isn't of much use in a computer unless there is some 
way to monitor the contents of all the registers and to determine what the 
computer is trying to do at any one time. To accomplish this, ZAP must be 
completely operational and be running a breakpoint-monitor program which 
allows the user to single-step with a software routine. We'll discuss such pro¬ 
grams later. 

This fact is of small consolation to a person with a partially debugged com¬ 
puter or hardware error that keeps side-tracking large programs. While it 
would be nice to see all the register contents, it is virtually impossible to do so 
without having a central processor that can run a dump and display routine. 

This cannot be done using the hardware stepping circuit of figure 4.5. It is 
possible, however, to look at the contents of the address and data buses while 
the central processor is stopped. This should give a good indication as to 
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whether the computer is operating properly. 

Many instruments can be used to read the TTL levels on the buses. A scope 
or high-impedance voltmeter can be used, but a visible display of the bus 
contents is a better idea. The circuits in figure 4.7 show simple methods to 

display the contents of the address and data buses. The circuits are included 
as aids and are not necessary for the operation of ZAP. 

Basically, the circuit of figure 4.7a is a simple LED driver that is duplicated 
16 times for the address bus and 8 times for the data bus. Because the Z80 
should drive only one TTL load from each output pin (bus driver inputs are 
already attached), any display drivers of this type must be attached on the 
output side of the bus drivers. This circuit will serve as a rudimentary front 
panel for any builders who feel a computer isn't complete without flashing 

lights. 

Sometimes the need arises to monitor a single point in a circuit and watch 
for level changes. While the LED driver of figure 4.7a would detect a slowly 
changing level, it would miss short pulses such as Ml. To monitor the occur¬ 
rence of such events, especially if no oscilloscope is available for testing pur¬ 
poses, it is advisable to build the circuit in figure 4.7b. This simple logic 
probe is adequate for most applications, but care must be taken in its use. It 
cannot detect an open circuit and the pulse detector only triggers on the 
negative edge of any transition. Should that present any problems, add the 
optional circuit using the 7486; that will allow it to detect either edge. 

The logic probe or similar logic level detector (scope, DVM, VOM, etc.) is 
necessary to statically test the subassemblies. 

Figure 4.1 A block diagram of a minimum ZAP system. 

Figure 4.2 An example of timing during a typical instruction cycle. 
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CRYSTAL 
2.5MHz 

VALUES Of R AND C 
SET OUTPUT FREQUENCY 

♦ 5V 

CLOCK 

Figure 4.3 Typical 2.5 MHz clock circuits for the Z80. 
a) With crystal control. 
b) With a variable-frequency oscillator. 

Figure 4.4 A single-cycle clock-generator circuit. 
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♦ 5V 
A 

WAIT 
2 80 PIN 24 

Figure 4.5 An instruction single-stepping circuit. 

*1 CYCLE 

«_D_V V.■/ \ O 

Figure 4.6 Instruction operation-code fetch (Ml) timing. 
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a) 

INPUT> 

+ 5V 
A 

♦ 5V 

330ft 

o 
1 

LEO 

OR 

INPUT 
0 LIGHT OFF 
1 LIGHT ON 

♦ 5V 

330ft 

a LEO 

2N2222 
OR EQUAL 

INPUT> 

♦ 5V 
A 

390ft 

o LOGIC T 

♦ 5V 39Cft 

♦ 5V 

33K 

/1 ♦ • w w 

10 11 Jii 
IC2 Q 74121 

0.1 SEC 0 

3 

FROM 
IC1 PIN 2 

♦ 5V 
A 

390ft 

o "PULSE' 

n 10 

+ 5V EDGE DE7ECTOR FOR SLOW PULSES 
INSEPT AT POSITION 'A' ABOVE (OPTIONAL) 

14 

3 4 

TO 
IC2 PIN3 

Figure 4.7 Typical LED drivers and a simple logic probe to monitor logic level changes. 
a) Visible logic level indicators that can be attached to the address and data buses to provide 

a display. 
b) A simple logic probe. 
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B. Reset Circuit 

Often ignored, the reset function is one of the most necessary controls of a 
computer. Its importance is immediately recognized when running an incor¬ 

rectly executing program. The reset command on the Z80 stops execution and 
loads the program counter with 00 hexadecimal (the lowest memory 
address). This allows the programmer to restart the program. When com¬ 
bined with the instruction single-stepping circuit previously outlined, pro¬ 

grams may be started, stopped, and started again at any time. 

A reset input can be manual, automatic, or a combination of both. Figure 
4.8a is a standard push-to-reset circuit. Its output is normally high until the 
button is pushed, and then it goes low. The Z80 will remain reset for as long 
as the button is held and will only begin to execute again when released. 
Manual reset is a necessity for initial program checkout, and this circuit is 
employed in the basic ZAP. 

When computers are used in applications where no human attendant is 
present, such as a traffic light controller, the manual reset cannot be used; an 
automatic reset must be employed instead. Figure 4.8b is the circuit of a total¬ 

ly automatic power-on reset. When power is first applied to the computer, 
the 10 mF capacitor will be completely discharged. The resultant logic 0 level 
on the input of the 7404 pin 1 will be maintained for approximately 50 ms, 
long after the +5 V supply has powered up the rest of the computer. The 
long charging rate of the capacitor will, in turn, generate a logic 0 (a reset 

condition) to the computer until the input level rises to approximately 2 V (a 
TTL logic 1). Once full power is applied, the time it takes the reset circuit to 
reach 2 V will constitute about a 35 ms power-on Reset pulse. Resetting the 
machine would require turning the power off. 

Manual and automatic reset are combined in figure 4.9. This circuit allows 
the computer to start program execution immediately after power is turned 
on. The program can be stopped and restarted by pressing the reset button. 
Slightly different components and additional functions are included in this 
diagram. Schmitt-triggered inverters (7414s) increase the reliability of the de¬ 
sign. When the power is turned off, the use of a diode to discharge the capaci¬ 
tor quickly assures that a pulse will be generated if power is suddenly reap¬ 
plied. Because power line glitches are usually short in duration, the discharge 
rate of the capacitor has to be fast enough not to miss generating a reset pulse 
once power is restored. 

While this reset circuit is not necessary for initial computer check-out, it 

should eventually be employed if ZAP is to be expanded to include any of the 
options outlined later. To synchronize the central processor and peripherals, 
they should be tied into the reset signal from this circuit. 

a) A manual reset circuit. 
b) An automatic power-in reset circuit. b) 
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RESET 
TO OTHER 
peripherals 

RESET 
TO 280 PIN 26 

TO OTHER PERIPHERALS 

Figure 4.9 A circuit to combine manual and automatic reset functions. 

C. Address Bus and Control Output Buffering 

The Z80 has the ability to directly address 65,536 (often called 64 K) indi¬ 

vidual bytes of program memory and 256 individual input and output ports. 
Because the microprocessor is a binary device, it is only natural that this ad¬ 
dress be binary. There are 16 binary address lines labeled AO thru A15. AO is 
the LSB (least significant bit), and A15 is the MSB (most significant bit). 

The logic levels on this bus are not arbitrary. The control section of the 
central processor sets the program counter to the next instruction to be ex¬ 
ecuted, and on the fetch cycle, it places the program counter contents on the 
address bus. During I/O instructions, additional timing cycles place the I/O 
device address on the 8 least significant bits (AO thru A7). Because this bus 
has to drive the inputs of many parallel devices, all of which draw some input 
power, the address bus must have an output current that will meet the load 
demand. The Z80 by itself can sink 1.8 mA maximum or one TTL load on 
each pin. This is no problem if the designer uses low power memories and pe¬ 
ripheral interface chips. These are expensive devices, and their use would not 
necessarily serve to educate the builder in the same way as configurations of 
less complex circuits. 

Using lower density ICs and TTL devices for decoding functions is less ex¬ 
pensive but requires considerably more power from the bus. The following 
table lists the input loading of various devices: 

Device Worst case input current 

Standard TTL (7404,7442, etc) 1.6 mA 
Low-power Schottky TTL (74LS04,etc) 0.18 mA 
2708 (1KX8 EPROM) 10 nA 
2114 (1KX4 programmable memory) 10 /xA 
2716 (2KX8 EPROM) 10 nA 
2102 (1KX1 programmable memory) 10 nA 
8212 (8-bit latch) 0.25 mA 
8T97 (6-bit driver) 1.0 mA 

It is easy to see that the real power eaters are TTL devices. Low-power 
Schottky TTL (LSTTL) devices can be substituted throughout the ZAP com¬ 
puter. They save power at slightly additional cost, but the circuit has suffi¬ 
cient power to support straight TTL. If LSTTL is substituted, it must be sub¬ 
stituted throughout. 

The loading caused by memory, especially with only 2 K bytes in the basic 
ZAP unit, is insignificant. With 1.8 mA drive current available from the Z80, 
we could use LSTTL for the I/O and memory address decoding but would 
have to limit the fanout (total input connections) on each address line to 9 
LSTTL inputs. This is sufficient for the basic ZAP and would probably be an 
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acceptable procedure, but it is not recommended. 

The first time a user attaches the logic probe (figure 4.7b) to an unbuffered 
address line, the computer may die. The load presented by the probe, as well 

as by the other circuitry, will exceed the drive capability of the bus. It's im¬ 
portant that the monitoring devices not impede circuit operation. 

Rather than try to optimize the design to a degree that forces the user to be 

aware of every /xA (microampere) consumed by test probes and LED drivers, 
it's easier to add buffering that increases the bus output power to a point 
where loading is not an important factor. This is the philosophy behind ZAP 
busing, and as a side benefit, it will provide enough power to expand ZAP to 
64 K should the user ever desire to do so. It also allows the user to add his 
own TTL circuitry without becoming overly concerned with bus loading. 

To achieve high power output from the address bus, a buffering device 
(called a non-inverting bus driver) is used. The AO thru A15 outputs of the 
Z80 make only one connection: to the drivers' input. All other devices that 
use the address are attached to the output of the drivers. 

Figure 4.10 is the diagram and truth table of the 8T97 bus driver. (An 
equivalent bus driver is the 74367.) This three-state device is capable of sink¬ 
ing 48 mA and can accommodate any combination of TTL, LSTTL, and 
memory connections a user would want to make. The final address bus con¬ 
figuration is shown in figure 4.11. 

The three-state function of the 8T97 is controlled by the BUSAK signal. 
This signal turns over control of the address bus to an external device during 
direct memory access operations. In a non-DMA situation, BUSAK is high 

and the 8T97 passes all outputs from the Z80. When a DMA request is ac¬ 
knowledged, BUSAK goes low, putting the 8T97 in a high impedance output 
mode. This facility allows memory to be written into or read by an external 
device and is usually reserved for high-speed operations that are faster than 
the central processor can achieve. 
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Figure 4.10 The pinout and truth table of an 8T97/74367 bus driver. 

BUILD YOUR OWN COMPUTER 99 

Copyrighted material 



16-BIT BUFFERED 
TRISTATE ADDRESS BUS 

'OUT TYPICAL 48mA 

Figure 4.11 The final buffered address bus configuration. 

D. Data and Control Bus 

The fourth and last area of direct central processor connections is the data 
bus and the remaining lines of the control bus. The reason for buffering the 
data bus is similar to the argument for the address bus with one exception— 
the data bus is bi-directional. 

A bi-directional bus means, of course, that data flows in both directions. 
When the Z80 is writing a byte of data into a memory location, the data 
flows from the central processor to memory. When the central processor is 
reading a memory byte, data flows from memory to the central processor. 
The bi-directional nature of the data bus requires that the bus drivers be 
either bi-directional internally, or attached in such a way that the same func¬ 
tion is performed. 

One way of making this bi-directional driver is to use two 8212s. The 8212 
(figure 4.12) was originally conceived and produced by Intel as an 8-bit 
latched input or output port. The 8212 can be latched continuously so that 
data flows through it, or it can be turned off to block the flow. It is well 
suited to this application because it has a three-state output. 

Two 8212s (figure 4.13) are wired in opposite directions. IC 6 directs data 
from the central processor toward memory, while IC 7 channels data into the 
Z80. Control is exercised through a single line connected to the RD control 
signal of the central processor. RD is normally low except during write oper¬ 
ations. This causes IC 6 to be off, in a three-state mode, and IC 7 on, which 
allows jdata from memory or I/O devices to reach the central processor. 
When RD goes high during a write operation, the process is reversed; IC 6 
turns on and IC 7 turns off. It is only necessary to use the RD line to control 
data direction. We're assuming, of course, that when the central processor 
isn't writing data, it must be reading it. While not exactly true, the concept 
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works well enough in practice, and the two 8212s are connected schemati¬ 

cally as in figure 4.14. 
It is not absolutely necessary to use 8212s to perform this function. Either 

8T97s or 74367s work equally well but take 4 IC packages. If you don't mind 
the extra wiring and have a source for 8T97s, they can be wired as illustrated 
in figure 4.15. 

The final connections to the central processor to be discussed are the con¬ 
trol bus signals, shown in figure 4.16. They coordinate peripherals and chan¬ 

nel data and addresses into and out of the central processor at the proper 
times. Each was briefly explained on the 280 pinout. Exact timing will be 
detailed when we discuss attachments of memory, I/O, and enhancements to 
ZAP. For the time being, unused control inputs are tied high (through 
resistors) to inhibit false triggering. 

The output lines are buffered for the same reasons as was the address bus. 
Furthermore, because this is a development computer, with expansion in 
mind, both the inverted and noninverted control signals are brought out to 
the user. 

The areas discussed thus far are combined into a single diagram (figure 
62/2 
LOGIC DIAGRAM 

4.17) called the Z80 bus and control diagram. 

PINOUT 
♦ 5V 

MQ MOOE 

STB STROBE 
OSl DEVICE SELECT l 

DS2 0EVICE SELECT 2 

INT INTERRUPT 

CLR CLEAR 

Figure 4.12 The pinout and logic diagram of the 
8212 8-bit input/output port. 
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♦ 5V 

Figure 4.14 A schematic diagram of two 8212 8-hit latches configured as bi-directional data bus 
drivers. 
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Figure 4.16 Control input connections and output 
buffering of the basic ZAP design. 
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E. Testing 

Insert all ICs except the Z80 and turn on the power. Each section is then in¬ 
dividually tested as follows: 

Clock — Testing the 2.5 MHz clock of figure 4.3a will require an oscilloscope 
or frequency counter to register the exact clock rate. Using the logic 
probe from figure 4.7b to monitor this clock rate would light all three 
LEDs. This indicates that the clock functions, but it will not indicate the 
rate. A similar test can be performed on figure 4.3b. 

Single Cycle — The logic probe (without the addition of the 7486 edge 
detector) is perfect for checking the single-cycle circuit of figure 4.4. 
With the probe on section C pin 8, the indication should be low. Press¬ 
ing and holding the button down should change the indication to a high 
level and cause the "pulse" LED to flash once. Releasing the button 
should not flash the pulse indicator as it returns to its initial logic condi¬ 
tion. 

Single Step — With the switch in the single-step mode position (figure 4.5), 
take a clip lead and momentarily ground IC 3, pin 3. The output at 
IC 1, pin 8 should be low. Pressing the single-step button will cause this 
output to go high. It will stay high until IC 3, pin 3 is momentarily 
grounded again. Check out the pushbutton debouncing circuit (which 
consists of IC 1 sections a and b) in the same manner as you did the 
single-cycle test. Finally, with the switch on the run mode, IC 1, pin 8 
should always be high. 

Power-on Reset — The circuits of figures 4.8a and 4.8b should have a nor¬ 
mally high output. When power is first applied to figure 4.8b, or the 
button pressed in figure 4.8a, the output should go low. Either situation 
will cause a logic low level to occur from the circuit of figure 4.9. 

Address Bus Drivers — The Z80 should not be inserted! With IC 9, pin 5 
grounded, all outputs of ICs 3, 4, and 5 on schematic figure 4.11 should 
appear high. In actuality, this will be the three-state output mode and 
the proper test equipment will register them as open circuits. Tying 
IC 9, pin 5 to +5 V through a 2.2 K resistor will turn on all the bus 
drivers. Their outputs will all be iogic high levels. Successively ground¬ 
ing the AO thru A15 lines at the Z80 connector should result in a low- 
level indication on the respective buffered output line. When all 16 lines 
can do this successfully, the address bus checks out. 

Bi-directional Data Bus — The data bus is tested in a similar manner except 
that the procedure is done twice—for data flow in either direction. 
Grounding IC 8, pin 1 (figure 4.14) simulates a read condition. Data 
should flow from right to left. Applying ground and +5 V (through a 
2.2 K resistor) alternately to the data input pins of IC 6 should produce 
similar levels on DOl thru D08 of IC 6. Raising IC 8, pin 1 to +5 V 
allows similar data transfer, but only from left to right this time. 

Control Bus — Referring to the schematic of figure 4.16, testing is simply a 
case of applying a known logic level to the input side of the series in¬ 
verters and noting the output levels one gate at a time. For example, if 
Z80 pin 19 was a logic low, IC 9, pin 2 would be a logic high and con¬ 
versely, IC 9, pin 4 would be low. Each inverter section which the 
signal passes through inverts the signal. 

II. Memory and I/O Decoding 

Before we can utilize the memory or I/O devices we must learn how the Z80 address¬ 
ing works. Remember, the address FF hexadecimal could refer to memory, or an input 
or an output port. The computer must have the ability to differentiate among the three 
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possible meanings. 
The control outputs of the Z80 contain the necessary routing information, and by 

properly gating them together, the correct signals are obtained. For basic I/O and mem¬ 

ory operations, the four signals of particular interest are MREQ, IORQ, RD, and 
WR. Their definitions are as follows: 

A. MREQ 
Memory Request. Whenever a transaction occurs between the central proces¬ 
sor and memory, the MREQ line goes to a logic 0. 

B. iORQ 
Input/Output Request. Whenever a transaction occurs between the central 
processor and either an input port or an output port, the IORQ line goes to a 
logic 0. 

C. “RD 
Read Request. Whenever the central processor reads input data from either 
memory or an input port, the RD line goes to a logic 0. 

D. WR 
Write Request. Whenever the central processor is writing data to either mem¬ 
ory or to an output port, the WR line goes to a logic 0. 

_To differentiate between input and output ports during I/O instructions, IORQ, 
RD, and WR are gated together as shown in figure 4.18. In a similar manner, MREQ, 
RD and WR are gated during memory transfers as shown in figure 4.19. Unlike the 
I/O decoding, but similar to the address bus driver discussed earlier, a memory-read 
condition does not have to be decoded. It is assumed that when the memory is not in a 
write mode, it is in the read state. _ 

The resulting three decoded strobes define the operations of Input Port Read (IORD), 
Output Port Write (IOWR), and Memory Write (MEMWR). If only three functions 
were required in your particular computer configuration, then no other decoding 
would be necessary. Such a computer would have one input port, one output port, and 
one bank of memory. To alleviate this problem, additional decoding of I/O and 

memory is necessary so that these control strobes can serve more than a single device. 
With the extra circuitry, the Z80 can independently address 256 input and output ports 
and 64 K bytes of memory. 

During an I/O request (either input or output), the 8-bit binary address of the par¬ 
ticular I/O port appears on lines AO thru A7 of the address bus. An explanation of ad¬ 
dress coding is shown in figure 4.20. Additional examples are illustrated in figure 4.21. 

Using this information, if an instruction were to designate output port 7 as its 
destination, then the circuitry of figure 4.22 could be used. When a code of 007 octal 
(07 hexadecimal or 00000111 binary) appears on the address lines with an IOWR 
strobe, the signals present on the data bus would be stored in an 8-bit register as output 
data. 

f _ 

iORQ 

WR 

CPU , 

SIGNALS \ 

RD 

iORQ GOES TO LOGIC 0 ON AN INPUT/OUTPUT OPERATION 

WR GOES TO LOGIC 0 WHEN THE CPU ATTEMPTS TO WRITE DATA TO AN 
OUTPUT OR MEMORY 

RD GOES TO LOGIC 0 WHEN THE CPU ATTEMPTS TO READ DATA FROM 
MEMORY OR AN INPUT DEVICE 

Figure 4.18 Input/output read and write decoding. 
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Figure 4.19 Memory read and write decoding. 

BINARY WEIGHTING TYPICAL PORT CODE HARDWARE DECODER 

A 7 

A 6 

A 5 

A 4 

A3 

A 2 

A 1 

AO 

27 X N • 128 X \ 

26 x ti . 64 x 1 

2*XN • 32 X 0 

2* XN • 16X0 

23 KN • 8X0 

22 XN • 4X1 

2* XN • 2X0 

2° XN • 1X1 

N » *0“ OR 'I* LOGIC LEVEL 

Figure 4.20 An explanation of input/output address codes. 

OECODEO 

“LT 
STROBE 

Figure 4.21 Address decoding logic. 
a) For address FFlt. 
b) For address 00t♦. 
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NOTE: DATA FLOW IS FROM THE CPU TO THE OUTPUT PORT 

OURING IOWR OPERATIONS. 

Figure 4.22 A possible method for decoding a single 8-bit output port address. The circuit Is for a 007, 
device code. 

I/O Decoding 

Of course, ZAP needs more than 1 port, even as a basic system. In fact, if it is ex¬ 
panded to include some of the optional peripherals, it will require 6 or 8 ports. 
Decoding these additional ports need not require 8 separate circuits like figures 4.20 or 
4.21. By incorporating a 4 to 10 line demultiplexer into the design, 8 port strobes can be 
derived. The circuit of figure 4.23 can be used for either input or output port decoding 
(by selecting RD or WR) and is addressed for 000 octal to 007 octal. It works by select¬ 
ing either of the two unconnected outputs (IC 3, pin 9 or 10) when an undecodable ad¬ 
dress is presented on the address bus. A3 thru A7 still must be treated in the same man¬ 
ner as that presented in figure 4.20, but A0 thru A2 serve as the 7442 address inputs. 
These 3 bits will designate 1 of 8 possible lines when IC l's output goes low. 

Duplicating this circuit to provide 8 separate input and output stobes (addressed 000 
thru 007) would require a total of 7 chips. The number of chips can be reduced to 3 if 
we take a little poetic license with the design. So far, we have decoded all 8 bits of the 
I/O portion of the address bus, making our decoder select 1 of 256 or, as in the 
previous circuit, 8 of 256. In either case, only the designated addresses are of any im¬ 
portance; all others are meaningless. For all practical purposes we could decode lines 
A0 thru A2 and ignore the rest. A circuit that does just that is shown in figure 4.24. 

4 The difference between this circuit and those previously described, besides having 
fewer chips, is that this one requires an intelligent user to recognize the advantages and 
disadvantages of taking such liberties. As in figure 4.23, this circuit decodes ports 000 
octal thru 007 octal. What the user should realize, however, is that it also decodes 010 
thru 017 and 020 thru 027, etc. The 3 LSB (least significant bits) repeat every 8 ad- 
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dresses. This is not a problem as long as the user is aware of repetitive addressing and 
watches his programming. Should more than 8 stobes be required, the 7442 can be re¬ 

placed with a 74154 (4 to 16 decoders). This will give 16 I/O port strobes that repeat 
every 16 addresses. 

IC 2 

NC 

NC 

PORT 7 IT 

PORT 6 If 

PORT S *lf 

PORT 4 U 

PORT 3 IT 

PORT 2 IT 

PORT 1 U 

PORTO IT 

Figure 4.23 A formal input/output port address decoding method that decodes all 8 address lines. 

♦ 5V 

I/O READ 
INPUT 
STROBES 

I/O WRITE 
OUTPUT 
STROBES 

Figure 4.24 >4 method for decoding input/output strobes with a reduced amount of circuitry. 

BUILD YOUR OWN COMPUTER 109 

Copyrighted material 



Memory Decoding 

Decoding the memory address bus is accomplished in a similar manner. It is inadvis¬ 
able to take the same tack and allow repetitive memory addressing because there is 
more likelihood of error. Even though 16 lines are involved, in actual application, 
memory decoding turns out to be less complicated. ZAP uses 1 K X 8-bit banks of 
programmable memory and 1 K-byte erasable read-only memory. Both of these de¬ 
vices require 10 address lines to define the 1 of 1024 locations in each bank. This leaves 
only 6 lines that have to be individually decoded to define any 1 K block of memory. 
Figure 4.25 illustrates how this can be accomplished. A 7442 (4- to 10-line decoder) is 
used to generate 8 separate chip-select lines. Because the address lines of the 7442 are 
tied to A10 thru A12, each strobe pulse will have a boundary of 1 K. It is not by chance 
that 1 K X 8 was chosen as the memory capacity of each bank. 

♦ 5V 

Figure 4.25 Memory bank decoding for 8 K of memory. 

While the basic configuration of ZAP provides decoding for 8 K of memory and 8 in¬ 
put and output ports, not all of these chip selects and port strobes are used. The extra 
lines are left for expansion. Figure 4.26 is a completed schematic of the I/O and mem¬ 
ory decoder for the builder to add to the circuit in figure 4.17. 
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Testing 

After you have added the components of figure 4.26 to figure 4.17, you are ready to 
test the memory and I/O decoding. Insert lCs 10,11, 12,13, and 14, but don't insert 
IC 20 yet. ICs 1, 3, and 9 should remain inserted from the previous test. The Z80 
should still be left out. The logic level at the D address input of each of the 7442s (ICs 
12,13, and 14) should be high. Pulling out ICs 8 and 9 (with power off) will cause this 
input to immediately change to a logic low level. 

Next, ground pins 30, 31, and 32 and tie 23 high on the Z80 socket. With the address 
bus buffers enabled, and a 000 address jumpered on A0 thru A2, a chip-select low 
should appear on the lowest strobe address. In this case, pin 1 of ICs 13 and 14 should 
be low and the other strobe lines high. Changing the 3 jumpers on A0 thru A2 will 
enable other device chip-select strobes. The memory bank decoder works the same way 
except that the jumpering should be applied to address lines A10 thru A12. 

After testing, insert all chips except the Z80. 

♦ 5V 

vcs? 
MCS6 

MCS5 
MCS4 
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MCS1 

MEMORY 
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PORT SELECT 
STROBES 

Figure 4.26 The memory and input/oulput decoding section of ZAP. 
a) Memory bank chip-select strobes. 
b) Input/output device chip-select strobes. 
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III. Memory 

Of course, a major consideration for any computer system is memory. Both program 
instructions and data must be stored and recalled at the appropriate time so the com¬ 
puter can perform its function. Even though the Z80 central processor has a quantity of 
8-bit storage registers, these can be only used for temporary manipulation of data and 
cannot store program instructions. Program instructions must be stored in external 
memory elements. 

The external memory may be divided into two broad classes: ROM (read-only mem¬ 
ory) and RWM (read/write memory). ROM is used to store specific, unchanging pro¬ 
gram steps or data. The contents of thes€ memory locations are considered permanent 
and cannot be easily changed. Read/write memory, on the other hand, is used to store 

data that changes while the computer is operating. Examples would be the results of 
calculations or programs that change frequently. For either type of memory, the 
ultimate function is still the same: to provide, on demand, either an instruction for ex¬ 
ecution or a location where data may be stored. 

Read-Only Memory 

ROM (read-only memory) is an important part of the computer system. ROM func¬ 
tions as a memory array whose contents, once set by special programming techniques, 
cannot be altered by the central processor. There are few exceptions to this rule. 

By its nature, ROM is non-volatile. When power is turned off, the program contents 
are not lost. Reapplication of power allows immediate program execution. 

Within this basic category of ROMs there are three subcategories — ROM, PROM, 
and EPROM — which are defined more by usage and application than their names 
might imply. 

ROM — Read-Only Memory 
This is storage which can be written into only once. The information is fixed and 
cannot be changed. A ROM is usually mask programmed by the manufacturer 
and is bought with a preset bit pattern. These types of ROMs are considered to be 
custom programmed. 

PROM — (User) Programmable Read-Only Memory 
This storage can also be written into only once and the information is fixed. 
These devices are typically bipolar fusable link PROMs, which are programmed 
by the user rather than the manufacturer. ROMs and PROMs do not generally 
use the same semiconductor construction technology. Storage is much denser on 
a ROM than on a PROM, and cost-per-bit is generally lower on a ROM. 

EPROM — Erasable-Programmable Read-Only Memory 
This device combines the best parts of a ROM and a PROM. When received from 
a manufacturer, all storage locations are unprogrammed. Using a special inter¬ 
face, the EPROM can be programmed by the user as a PROM would be, with the 
result utilized as a ROM. If the EPROM content must be changed, it can be erased 
and reprogrammed. Depending upon the particular device, an EPROM can be 
either electronically alterable (often differentiated by the separate abbreviation 
EAROM) or ultraviolet erasable. The latter is sometimes called a UVEPROM, but 
is more often just called an EPROM. They are easily recognizable because they 
have a quartz window over the integrated circuit. This window is transparent to 
ultraviolet light and facilitates erasure. 

While there can be considerable discussion as to the merits of each option, all ROMs 
perform the same ultimate function. For each independently addressable location, 
there is specific stored-bit pattern. Only the processor can determine whether this is 
data or an instruction. The method of storage is the same in either case. Figure 4.27 
details the block diagram of a ROM. 

A ROM is simply a logical block which, under program control, provides a preset 
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pattern. Figure 4.28 is a 3-bit read-only memory. When switch SWl is closed (the posi¬ 
tion it would take when the central processor wanted the stored information), the 3-bit 

code of “101" would appear at the outputs. The diode grounds the input signals to the 
7404 inverters when SWl is closed. Expanding to more than 3 bits is simply a matter of 

adding more diodes, resistors and buffer stages. Such a circuit is referred to as a diode- 

matrix ROM and in this case would be a 1-line by n-bit ROM. 
A 3-bit memory is not much use. This concept can easily be expanded to 16 bytes by 

adding an address decoder as diagrammed in figure 4.29. A completed schematic with 
the diodes specifically arranged to perform a simple 9-byte program is illustrated in 
figure 4.30. This short test program will be used later during the checkout phase. 

The diode-matrix ROM is presented for its educational value only. This is not a 
method that should be employed in the ZAP computer. Realizing that there are inte¬ 
grated circuits that would successfully fulfill the requirements in each of three 
categories, we must analyze our needs a little more closely. 

The pertinent questions are: memory size, and the cost and ease of programming. 
The size of a ROM is determined by the user. When power is first applied, how much 
effort does the user want to expend to make the computer execute a specific program? 

ZAP has no front panel and no banks of address and data switches to toggle in instruc¬ 
tions. This being the case, ZAP must have a program that executes immediately (when 
power is applied or the reset button is pushed), and that allows the central processor to 
communicate with its peripherals and set itself in a mode that is directly programmable 
through these devices. Once power is applied, a simple 50- to 100-byte program can be 
written, which facilitates keyboard to memory loading. But perhaps we need to enter a 
large program in memory? Are we to enter it all through the keyboard? 

High-speed data entry can be accommodated through a serial interface. This can be 
added at the expense of another 100 or 200 bytes. Another consideration is the necessi¬ 

ty for some operator address and data display to ease program development. 
In conclusion, to incorporate all the functions necessary for a single-board develop¬ 

ment system, the ROM can easily require 500 to 1,000 bytes of storage. Many comput¬ 
er systems use a 64- to 256-byte ROM to store a bootstrap program. A bootstrap is a 
program that coordinates the minimum amount of necessary peripherals to load a 
larger program into the computer. In most personal computer systems, this bootstrap 

controls a cassette interface, and the program that is subsequently leaded is calied a 
monitor. 

A monitor (explained in Chapter 6) is a very important piece of software that re¬ 
quires about 1 K of program storage. Our decision is whether to make the monitor 
totally resident in ROM (ready for immediate execution), or to reduce ROM to the 
barest minimum and load the monitor from either a keyboard or a cassette storage sys¬ 
tem. 

This is an important consideration for someone building a computer from scratch. 
When given a choice, I feel, you should almost always opt for the solution that calls for 
the fewest components and you should include the ROM monitor in the hardware. It's 
like putting the cart before the horse to require that a cassette interface be used to load 
all the diagnostic software. It's quite possible that the monitor program, resident in a 
1 K ROM, would be required to troubleshoot and align the serial interface and cassette 
modem sections. A further consideration is that the ZAP computer can be brought on 
line sooner. With a ROM monitor, useful programs can be entered via the keyboard 
without having to build a serial interface. 

I suggest that the preferred ROM memory size for ZAP be 1 K. As previously men¬ 
tioned, ROM is mask-programmed by the manufacturer. However, let's not forget that 
for a home-built computer, you are the manufacturer. Fusable link PROMs are an ex¬ 
pensive proposition when configured in a 1 K block. As a 64-byte bootstrap loader 
they are ideal. 

The suggested alternative for the ZAP read-only memory is to use an EPROM that is 
programmed by the user. A 1 K EPROM such as the 2708 (or the 2 K 2716) is cost- 
effective for the home-built computer. The Intel 2708 ultraviolet erasable read-only 
memory is recommended for this application. (The 2716 is a 2 K EPROM with a single 
+ 5 V power supply.) 
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Figure 4.27 A block diagram of a read-only memory. 

♦5V *5V *5V +5V 

OATA OUTPUT 

Figure 4.28 A simple 3-bit read-only memory (1x3 bits). 

Figure 4.29 A block diagram of a 16 byte read only memory. 
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Figure 4.30 A diode-matrix read-only memory with a test program. 

EPROMs 

The EPROM is a read-mostly memory. It is used as a ROM for extended periods of 
time, erased occasionally and reprogrammed as necessary. Erasure is accomplished by 
exposing the chip substrate, covered by a transparent quartz window, to ultraviolet 
light. The EPROM memory element used by Intel in the 2708 is a stored-charge type 
called a FAMOS transistor (Floating-gate Avalanche injection Metal Oxide Semicon¬ 
ductor storage device). It is similar to a p-channel silicon gate field-effect transistor 
with the lower or ''floating” gate totally surrounded by an insulator of silicon dioxide. 
The 1 or 0 storage value of the FAMOS cell is a function of the charge on the floating 
gate. A charged cell will have the opposite storage output of an uncharged cell. By ap¬ 
plying a 25 V charging voltage to selectively addressed cells, particular bit patterns that 
constitute the program can be written into the EPROM. Surrounded by insulating 
material, the charge can last for years. When this silicon dioxide insulator is exposed to 
intense ultraviolet light it becomes somewhat conductive and bleeds off the charge on 
the floating gate. The result is erasure of all programmed information. 

Appendices Cl and C2 detail the pin layout and electrical specifications of the 2708 
and the 2716 respectively. Chapter 7 explores various methods to program and test the 
chip. 
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Read/Write Memory 

Read/write memory is just what its name implies. Such memory allows data to be 
written into it as well as be read from it. Read/write memory for microcomputers is 
generally configured from semiconductor programmable memory devices that retain 
data only while the power is on. 

ROMs are technically random access devices; however, read/write memory, which 
is composed of semi-conductor devices and is primarily intended for use in microcom¬ 
puters, has come to be called RAM (random access memory). From this point on, we 
shall refer to RAM as programmable memory. 

There are two classes of programmable memories: static and dynamic. Static pro¬ 
grammable memory stores each bit of information in a bi-stable storage cell such as a 
flip-flop. This information is retained as long as the power is supplied to the circuit. 
Dynamic programmable memories have a simpler internal structure, smaller size, dissi¬ 
pate less power, and are inherently faster. They store information as an electric charge 
on the gate to substrate of a MOS transistor. This charge lasts only a few milliseconds 
and must be refreshed. This necessity to refresh the stored information is one of the ma¬ 
jor distinctions between static and dynamic programmable memories. 

Refreshing dynamic memories can be bothersome, however. The process requires 
that all storage cells be addressed at least once every few (usually 2) milliseconds. A 
counter circuit is usually incorporated to exercise the memory address lines when the 
computer is not accessing memory. In most systems, memory refresh requires addi¬ 
tional external circuitry. The Z80 contains this circuitry within the central processor 
chip and greatly facilitates the use of dynamic memory. However, this facility is lost 
when the Z80 is reset. Therefore, extra refresh circuitry is necessary. 

The choice between dynamic and static programmable memory technology is 

predicated on cost and convenience. Even with the expense of external refresh circuitry, 
dynamic memory is less costly. In a prototype system such as ZAP, however, dynamic 
memory is more trouble than it is worth. Once built and operational, dynamic memory 
might well be the best answer to memory expansion. But at this point in the building 
process, the inclusion of dynamic memory would over-complicate the design. This 
book, which emphasizes getting a beginner on-line, deals exclusively with semiconduc¬ 
tor static programmable memory applications. 

Static Programmable Memory 

Figure 4.31 is a block diagram of a static programmable memory element typical of 
the type used in the ZAP computer. There are five basic components of a program¬ 
mable memory: 1) address input lines, 2) data input, 3) data output, 4) chip select, 
and 5) a read/write- or write-enable strobe line. The address input lines are connected 

to the address bus of the computer. In the case of a N by M bit programmable memory, 
where N is the number of words and M is the length of each word, there must be 
enough address lines to address all N bytes. For example, in a 1 K programmable mem¬ 
ory it would take 10 bits to address all 1024 bytes within this memory (eg: 2,O"1024). 
Static programmable memory chips that contain fewer bytes of data, such as a 64-byte 
programmable memory, would obviously require fewer address lines. For a 64-byte 
memory, only 6 bits of address are necessary. 

Because the function of a static programmable memory device is to allow storage 
and retrieval of data, provisions must be made for data input and data output from the 
device. The data input and data output lines (shown in figure 4.31) are designated as 
separate functions. 

During the read function, the stored data within the addressed memory cell is avail¬ 
able on the data output lines. During the write function, data that is placed upon the 
data input lines would be stored at the address designated by the code on the address 
input lines. It is not necessary that static programmable memory devices have indepen¬ 
dent data input and data output lines. 

In most cases, these devices are configured with three-state outputs. Data input and 
data output can be attached together to a bi-directional data bus, or they can be the 

116 BUILD YOUR OWN COMPUTER 

Copyrighted material 



same lines and time multiplexed. Figure 4.31 illustrates a three-state method of data 
busing. During a read function, the data input lines are disabled internally within the 
memory device. The contents of the memory cell addressed by the address input lines 

are available on data out and are fed directly to the bi-directional data bus. During a 
write function, the opposite is true. The data output lines are set in the three-state mode 
(which you may recall is effectively an open circuit), and draw no current from the bi¬ 
directional data bus. The contents of the bi-directional data bus are stored at the 
designated memory cell. 

All of these multiplexing functions are dependent upon the read/write and chip- 
select lines. No operation can occur without the memory device being selected through 
the chip-select line. To select a particular bank, as outlined earlier, it is necessary to 
have decoding logic that enables these banks through the chip-select lines. Once a chip 
or bank of chips has been selected, the computer determines whether data should be 
read from or written into these memory locations. Under normal operation all static 
programmable memory is left in the read state, and only enabled during a write com¬ 
mand by setting a level 0 on the write enable. This is called a write-enable strobe. 

Figure 4.32 is a detailed timing diagram of the memory read and write cycles. The 

write/enable is a combination of memory request and write. A read/enable is a com¬ 

bination of memory request and read. Proper decoding of these signals and the chip 
select were discussed previously. In its basic form, ZAP has 8 chip-select lines, each ad¬ 
dressing alK bank of memory. 

Figure 4.33 illustrates the memory map of the basic ZAP computer. As initially con¬ 
figured, ZAP contains 3 K bytes of memory. Location 0 thru 3FF is a 1 K EPROM. 
Locations 400 thru BFF are static programmable memory locations. The 1 K EPROM is 
configured to reside in locations 0 thru 3FF so that ZAP can be easily started with a 
power-on reset. Programmable memory located at locations 400 and above is con¬ 
sidered to be user programmable memory. At least 2 K is recommended for satisfac¬ 
tory operation. ZAP will work with 1 K, but 2 K is recommended for basic peripheral 
expansion. 

Figure 4.33 also shows how memory is attached to the computer. All three banks of 
memory are attached in parallel between the address and data buses. Each bank has a 
separate decoded chip-select. When the EPROM is enabled and MCSO is at a logic 
level 0, EPROM data is impressed upon the data bus lines. The other two banks of 

memory are in the three-state mode and have no effect on the bus. When the computer 
accesses programmable memory, the chip for that particular bank of memory is set to a 
logic 0, and only that bank of memory has access to the data bus. 

While all banks of memory would have the same address applied to them, only the 
selected bank would be in the active mode. The logic flow is similar for the computer to 

write into a bank of memory. You will notice that there are write-enable lines leading to 
each of the 1 K static programmable memory banks, but not to the 1 K EPROM. AlK 
EPROM can only be written into with a special interface. Therefore, the write-enable 
strobe is only attached to the programmable memories. 

If, for example, the computer were to write into location 400, the chip-select for 
bank 1 and the write enable for bank 1 would both have to be at a logic 0 to allow data 
on the data bus to be stored into location 400. This type of programmable memory 
configuration is both multiplexed and three-state. In the read mode, data flows from 
the programmable memory chip; in the write mode it flows into it, and when not se¬ 
lected it's three-state. 

Up to this point, we have discussed block diagrams of static programmable memory. 
To produce an operational computer, it's necessary to configure this memory with ac¬ 
tual parts. Unfortunately, single chip 1 K by 8-bit programmable memories were ex¬ 

tremely expensive when ZAP was designed. Therefore, these 1 K blocks are designed 
from multiple components. Two relatively inexpensive and popular static program¬ 
mable memory chips are the Intel 2102A (Appendix C3) and the Intel 2114 program¬ 
mable memory (Appendix C4). 

The 2102A is a 1 K X 1 static programmable memory. Configuring a 1 K X 8 block 
of memory requires eight 2102s attached in parallel. By comparison, configuring a 
1 K X 8 block with 2114s would require only two chips. This is because the 2114 has a 
higher internal density than the 2102. Because the objective of any hand-wired comput- 
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er project is to get the device on line easily, 2114s are the recommended programmable 

memory devices for ZAP. While 2102s will work, the added wiring necessary to use 
these devices far outweighs the additional cost of the 2114s. 

Figure 4.34 illustrates how two 2114s are attached together to produce a 1 K X 8 

programmable memory bank. They share a common chip-select line. The data input 
lines are divided so that 4 bits of data are stored on each chip. Because each has a 
1024-byte address capability, the 10-bit address lines are commonly shared. To build 

the basic ZAP, two circuits of the type illustrated in figure 4.34 should be constructed. 
The total memory for the basic computer is 3 K. It can be expanded to 8 K without ad¬ 
ditional address decoding. It is not absolutely necessary to have 2 K of programmable 
memory if the user wishes only to check the operation of the system. At a minimum, 
the EPROM must be wired as 1 bank of memory. 

The 1 K EPROM contains the monitor which allows ZAP to function. This monitor 
contains many smaller programs that are called subroutines. When the main program 

calls a subroutine, it places the return address on a software stack located in program¬ 
mable memory. At the conclusion of the subroutine, the central processor pulls this ad¬ 
dress from the stack and returns to the main program. Usually the stack requires no 
more than 64 bytes. However, it is no less trouble to wire two 2114s for a full 1 K X 8 
bank of memory than to try to wire a 64-byte memory. 

An additional bank of 1 K, designated as bank 2, could be added at the user's discre¬ 
tion. This bank is necessary if you plan to write programs that will occupy more than 
1 K of memory including the stack. As the computer is presently configured, 1 K may 
appear adequate; however, for the additional programs outlined in this book, 2 K is 
recommended. This is especially true when a buffer area is required to communicate 
with external peripherals. The schematic for the final memory configuration is shown 
in figure 4.35. It should be added to the circuitry of figures 4.17 and 4.26. 

Unlike the other sections of the computer, the memory cannot be checked except 
under program control. Theoretically, the address lines can be preset and data read or 
stored, but it's not worth the effort. Memory checks will occur after the input/output 

section is wired. Basically, it will be checked first with EPROM alone, then with the ad¬ 
dition of the programmable memory. I mentioned previously that EPROM and pro¬ 
grammable memory are related yet operate independently. While a program is often 
stored in PROM, it usually requires programmable memory for proper execution. 

In a short program that loads the accumulator, writes to an output port, and jumps 
back to itself again, with no subroutine calls, programmable memory is not necessary. 
It can be completely located on EPROM. The exact procedure for this test will be out¬ 
lined at the end of the I/O section. 
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Figure 4.31 A block diagram of a static programmable memory element of N x M bits. 

118 BUILD YOUR OWN COMPUTER 

Copyrighted material 



L ... . ... i MEMORY READ CYCLt 

*2 

• 

EMORY WRITE CYCU 

T2 Tl 

t4 9 

T3 

_j f \_i ' \ , \ _ _ 1 \ , 

_LI_ MEMORY ADDR. K MEMORY AOOR. J_ 
MREQ 

\ / \ / 

RO 
\ / 

WR 

DATA BUS 

\ / 

/ 
OATA ! OUT ]- (00- 07) iir< / \ 

waTT ::n:: :n;;; 

Figure 4.32 A timing diagram of the memory read or write cycles for the Z80. This diagram does not 
include WAIT states. 

BANK 0 BANK l 

MCSO <► MCS1 

BANK 2 

MCS2 

MEMWR o- 
WRlTE ENABLE 

Figure 4.33 A block diagram of the memory map for the ZAP computer. 
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IV. Input/Output 

Thus far we have discussed the central processor control and memory decoding. The 
input and output functions are equally important. For the computer to display useful 
information, it must be "interfaced" to peripherals. 'Interface" is an overworked term 
that refers to a capability of communicating with external devices such as keyboards, 
video or LED displays, and memory storage systems. Communication can be either 
data input or output. 

Input data can come from keyboards, audio cassette mass storage, or special data ac¬ 
quisition interfaces. Similarly, output data flows from the computer to peripherals (eg: 
video displays, numeric readouts, printers, and external control interfaces). The func¬ 
tion and format of the data communication between the central processor and the pe¬ 
ripherals might vary considerably, but the internal routing of the data is fundamentally 
the same. 

The Z80 microprocessor provides both an input and output instruction. An output 
from the processor is logically the same as writing to memory, and receiving an input 
from an external device is similar to a memory-read command. They are differentiated 
from memory operations by gating the read and write status lines with the I/O request 
control line. Logical concurrence of an I/O request and a read or write status output 
designates the direction of the communication with the peripheral device. Simulta¬ 
neously with the control signals, the address code (1 of 256) of the subject device is 
placed on the address bus. A timing diagram of these signals is shown in figure 4.36. 
The decoding logic was detailed in section II of this chapter. 

Wiring the I/O ports for ZAP is a two-stage process. When hand wiring a computer, 
the most important consideration is to see that the input/output function works by the 
least complicated method. A successful test of the ZAP I/O section also indirectly tests 
memory. This is so because input and output instructions cannot be exercised except by 
a program stored in memory. 

Z80 input and output is handled 8 bits at a time. It does not matter whether the exter¬ 
nal interface configuration is serial or parallel. Data transfer between the central pro¬ 
cessor and I/O is 8 bits parallel and basically occurs as follows. 

$ 

A0-A7 

iORQ 

ffo 

DATA BUS 

WAIT 

WR 

DATA BUS 

READ CYCLE 

WRITE CYCLE 

Figure 4.36 A timing diagram of input or output cycles for the Z80. 
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Output Instruction 

OUT(n), A 

When this instruction is executed, the contents of the accumulator A are placed on 

the data bus and written into device n. The address of device n is located on address 
lines AO thru A7. 

If the accumulator contains 40 hexadecimal when the instruction OUT 23, A is ex¬ 
ecuted, 40 hexadecimal will be written into the peripheral device (also called "port 
number") decoded as 23 hexadecimal. 

While there are other more complicated output instructions available in the Z80 in¬ 
struction set, they all pass data through the data bus to the external device. Because the 
data bus is used for transfer of information between the central processor and memory 
as well as I/O, the computer must be allowed to continue executing its program. Data 
cannot remain on the data bus waiting for the peripheral (the central processor can be 
made to do this but such abstract configurations would be confusing at this time). The 
data is valid for only a few clock cycles and must be stored if needed for a longer 
period. 

Figure 4.37 diagrams a typical 8-bit storage register. It consists of 8 individual stor¬ 
age elements with a common "store enable" input. In its simplest form, the single stor¬ 

age cells can be D-type flip-flops such as shown in figure 4.38. Input data (ie: the data 
bus) is attached to the D input lines and is only clocked onto the output lines (Q and 
Q) during an I/O write strobe. Using 7474s would require 4 chips for an 8-bit word. A 
better method is to use the improved circuits of figure 4.39. 

Input Instruction 

IN A, (n) 

When this instruction is executed, the data from the selected port (n) is placed on the 

data bus and loaded into the accumulator. 
If the subject external device reads 10 hexadecimal when the instruction IN A, 20 is 

executed, the value 10 hexadecimal read from device number 20 hexadecimal would be 
loaded into the accumulator. 

There are other more complicated input instructions but as was the case with output 
instructions, the route for all data is still the data bus. To keep the data bus from being 
dominated by a single device attached to it, all input devices (ie: the output from them) 
must be three-state. This can be accomplished either by using interface logic such as 
UARTs and peripheral interface adapters that are designed to be three-state, or by add¬ 
ing three-state input buffers such as illustrated in figure 4.40 (the block diagram of the 
typical 8-bit, parallel-input port). 

Whatever is on input lines B0 thru B7 during an I/O read instruction will be directed 
to the central processor. Using these direct read instructions there is no interaction be¬ 
tween the central processor and the external hardware attached to the input port. Addi¬ 
tional logic is required to coordinate the exact timing between the computer and an ex¬ 
ternal peripheral. The solution is called "handshaking." Such a capability requires 
either more sophisticated input port hardware, connection to the central processor, in¬ 
terrupt logic, or additional I/O ports to coordinate the timing. 

Checking out the basic ZAP hardware is best accomplished by using the least com¬ 
plicated hardware. A simple input port is illustrated in figure 4.41 and consists of 2 

quad three-state buffers. Should there be any brave experimenters who wish to have 
full handshaking on I/O ports or need more than the 8 mA output drive capabilities of 
a LSTTL device, input and output ports can easily be configured using Intel 8212s. The 
specifications described in Appendix C5 demonstrate its versatility. 

Input/Output Checkout 

Ultimately, ZAP could have a keyboard, RS232 serial CRT terminal, audio cassette 
interface, and analog, as well as digital I/O capabilities. Trying to attach all these pe¬ 

rn BUILD YOUR OWN COMPUTER 

Copyrighted material 



ripherals together and checking everything simultaneously is a monumental undertak¬ 
ing. A more methodical approach is to construct the minimum hardware and software 
that proves operational and then build upon it. That is the route taken thus far. 

With the exception of memory, we have attempted to eliminate any potential prob¬ 

lems by static testing where possible. The simple I/O devices of figures 4.39 and 4.41 
lend themselves easily to this situation. To test I/O fully requires one input port and 
one output port. It should be wired as shown in figure 4.42. Only port 0 need be con¬ 
nected at this time. The additional circuitry included in this diagram can be ignored. 
Only ICs 21 thru 23 are of concern presently. The other devices are enhancements to 

the basic ZAP and will be discussed later. 

Static Test 

With power off, remove all ICs previously installed. Insert ICs 20, 21, 22, and 23. 
Turn on power. Temporarily ground DSOWR and DSORD. This maneuver, impossible 
under direct computer control, allows data bus access to both input port 0 and output 
port 0 at the same time. With the two ports connected in this manner applied input data 
should be available immediately at the output port. With the input lines of ICs 21 and 
22 open and power applied, the outputs of IC 23 should be at a high level. Sequential 
grounding of input lines B0 thru B, should be reflected on lines B0 thru B7 of IC 23. A 
final test is to disconnect the temporary ground on DSOWR while one of the input lines 
of IC 21 and 22 is grounded. The logic 0 output of IC 23 should remain low even when 
the input line is no longer grounded. The result is that the data is "latched/' It will re¬ 
main until updated by another write strobe. 

o? o- 
£>6 0- 

O5 O' 

04 °- 
O3 o- 
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I/O WRITE STROBE 
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87 Bg 85 84 e3 82 Bj 8q 
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LSTTL I OUT • 8mA 

Figure 4.37 A block diagram of a typical latched parallel output port configured with an 8-bit storage 
register. 
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Figure 4.38 A block diagram of a latched parallel output port using D-lype flip-flops as a storage 
register. 

DATA BUS DATA BUS 

DSXWR 07 d6 d5 d4 03 D2 D, Dq 

8-BIT LATCHED 
PARALLEL OUTPUT 

DSXWR 
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8-BIT LATCHED 
PARALLEL OUTPUT 

DATA BUS 

D7 D$ D5 D4 O3 02 Dj Oq 

8-BIT LATCHED 

PARALLEL OUTPUT 

Figure 4.39 Schematic diagrams of 8-bit latched parallel output ports. 
a) Using tv/o 4-bit LSTTL latches. 
b) Using a traditional 8-bit TTL latch. Note that non-LSTTL devices can be substituted but 

care should be taken to observe the total bus loading. 
c) Using a newer 8 bit LSTTL latch. 
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Figure 4.40 A block diagram of a typical 8-bit parallel input port. 
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Figure 4.41 A schematic diagram of an 8 bit parallel input port for the ZAP computer. 
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V. Dynamic Checkout of the Basic Computer 

All systems, with the exception of memory, should have successfully passed the 
static checkout procedures. The memory wiring should be checked for continuity. 
Because ZAP has no front panel or indicator (unless you wish to add one), the full sys¬ 

tem can only be tested by executing a program that dynamically exercises all the system 
hardware. This is easier than it sounds. For the computer to output a number to a spe¬ 
cific port address, the central processor must be operational and have reset properly to 
execute the instruction. The memory read must work or the central processor wouldn't 
know what to do. The memory and I/O decoding must work for the data stored in 
memory to arrive at the right output port. And finally, for the data to be read at the 
port, the output port must function as well. In short, if you can execute a program, the 
computer works. 

We can make the process simpler by using the fewest program steps possible and by 
initially eliminating the necessity for programmable memory. Remember, ZAP has 
both EPROM and programmable memory. With no monitor or front panel, program¬ 
mable memory cannot be loaded directly to run a test program. The test program must 
be already loaded in ROM (in our case EPROM). By carefully selecting the instructions 
used in the test program, programmable memory can be left out entirely when we run 
the first test. Why complicate matters by having more hardware than is necessary? 

Few instructions are required to test the operation of the processor, reset, memory 
and I/O. Usually the central processor either works or it doesn't. Central processor 
failure is rarely a case of one of the instructions executing improperly. If ZAP can read 
in data at port 0 and output the same value to output port 0, we can assume it all 
works. For the data to reach output port 0, it must travel through the central processor 
(assuming you have removed the temporary grounds on the I/O strobe lines) under 

program control. 

Such a test program is: 

OCTAL 

IN A, 0 333 000 
OUT 0, A 323 000 
IP NN 303 000 000 

HEXADECIMAL 
DB 00 read port 0 in 
D3 00 write to port 0 out 
C3 00 00 jump to beginning 

This 7-byte program will read input port 0 data into the accumulator and then write 
this same data to output port 0. The jump instruction will cause the program to repeat 

this action continuously. The program requires no programmable memory to store 
either intermediate data or the stack pointer. Because only the accumulator is affected, 
the 7-byte program can be completely contained in ROM. In this case, ROM can be 
either a 2708 EPROM programmed manually as described in Chapter 7 or a simulated 
ROM as shown in figure 4.30. If you use a simulated ROM, it may be necessary to 
reduce the 2.5 MHz clock rate to compensate for the capacitance of the external cir¬ 
cuitry. Figure 4.30 also includes an output to port 5 that tests a data display to be added 
later. Rather than rewrite the EPROM or rewire the pseudo-ROM, you may wish to 
add this instruction now. 

The final test of the basic ZAP is to exercise a program that uses both programmable 

memory and EPROM. Again, the philosophy is that if it can store and retrieve 1 byte 
from programmable memory, then all 1 K of that bank should work. A slightly longer 
program is used this time. The following program is stored in EPROM and the pro¬ 
grammable memory is used by the central processor to store the stack: 

TEST 

OCTAL HEXADECIMAL 
LD SP, nn 061 000 006 31 00 06 set stack pointer to 

middle of bank 1 
programmable memory 

IN A, 0 333 000 DB 00 read port 0 input 
CALL TEST 315 014 000 CD 0D 00 call program test 
OUT 0, A 323 000 D3 00 write data to port 0 out 
JP nn 303 000 000 C3 00 00 jump to beginning 
RET 311 C9 return to main program 
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When assembled, the 14-byte program would be loaded as follows (in hexadecimal): 

Location Program 
00/00 31 00 06 

03 DB 00 
05 CD 0D 00 
08 D3 00 

0A C3 00 00 
OD C9 

The operation of this program is similar to the previous example. A byte is read from 
input port 0 and then read back out to output port 0. In between these operations there 
is a call to a subroutine that is just a return instruction. When the call is executed, the 
location where the program is to resume operation after the call is put on the stack in 
programmable memory. At the conclusion of the call (the return instruction), the ad¬ 
dress is popped off the stack and placed in the program counter so that the program can 
resume where it left off. The only way for the input data from input port 0 to get to 
output port 0 is for this call to be executed properly. Of course, this requires that pro¬ 
grammable memory work properly. 

Many other programs that would further enhance the diagnostic checkout pro¬ 
cedures can be written. In my experience, however, if it executes these two programs, 
you can count on everything running. 

Once these milestones are reached, the experimenter has a truly operational comput¬ 
er. The next step is to expand this basic unit and make ZAP somewhat more versatile 
by adding address and data displays, a hexadecimal keyboard, a serial interface, along 
with an operating system that coordinates the activities of these peripherals. While the 
present system is a computer, these additions are necessary to move beyond an ex¬ 
perimenter's breadboard project. 
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CHAPTER 5 

THE BASIC PERIPHERALS 

Once the basic ZAP computer has been constructed and tested, we are ready to add a 

few necessary peripherals that will greatly increase the system's utility. External periph¬ 
erals facilitate the input and output capabilities of the computer. They include such 

items as printers, cathode-ray tubes (CRTs), tape drives, and disks. Peripherals of this 
magnitude, however, are usually used on larger systems. For our Z80-based ZAP, 
useful peripherals include a keyboard to ease data and program entry; a visual display 
to allow the computer to indicate a logical conclusion in readable form; a serial com¬ 
munications interface, which allows ZAP to “talk" to another computer; and an inter¬ 
face to an audio cassette mass storage device. These four ingredients are the difference 
between an experimental breadboard and a useful personal computer. 

The keyboard can be either a small keypad for limited data entry or an alpha-numer¬ 
ic "typewriter"-style ASCII (American Standard Code for Information Interchange) 
keyboard for text editing and high-level language programming. The visual display 
could range from a hexadecimal LED readout to a full 24-line by 80-character CRT ter¬ 
minal. The serial port, in conjunction with the audio cassette interface, could be used 
to cold start the computer and load application programs. 

As with the previous circuits in this book, I've tried to provide various alternative 
designs so that you, the builder, may construct a truly personal system. Each of the 
four peripheral devices will be explained in detail and numerous design examples will 

be provided; both limited function hexadecimal input and full ASCII keyboards will be 
addressed. In the case of the visual display, we will discuss a rudimentary LED octal 
and a hexadecimal readout for ZAP. For more sophisticated visual interaction, a CRT 
terminal is required. Because this unit is much more complicated than a keyboard or an 
LED display, an entire chapter has been dedicated to it. My basic premise is to start 
with the essentials, provide a thorough understanding of their applications, then move 
to more complex, more useful add-ons. 

The expansion of the basic ZAP into an interactive microcomputer system requires 
the addition of a software program to synchronize and exercise the new peripherals. 
This software is called a monitor and is discussed in a later chapter. Peripherals merely 
provide the means for added data entry and display capability. 

I. KEYBOARDS 

The only way the Z80 can communicate to an external device is through the input/ 
output bus structure previously described. (While more esoteric methods such as direct 
memory access exist, they will be ignored for the present.) When the processor wishes 
to signal the user that an event has occurred, it can do so by changing the output level 
on one bit of a parallel-output port. For example, the end of program execution can be 
designated by bit 7 on port 0 going from a logic 0 to a logic 1. Using this concept, 8 
separate elements could be individually designated and controlled from the 8 bits of 
output provided on the single "basic ZAP" port. 

Information input is just as simple. The numbers 0 thru 7 could correspond to 8 
switches on the 8 input bits of port 0. This is shown graphically in figure 5.1. When 
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bit-7 switch is pressed, grounding the input, the logic level transition can signify a nu¬ 
meric entry of 7 to the computer; many microprocessor applications require only these 
few bits of I/O. A traffic light controller, for example, with a single red, yellow, and 
green light would need only three bits of output. 

The program to control the lights would have been written, assembled, and pro¬ 
grammed into some type of non-volatile storage. However, ZAP must interact with a 
human operator in such a way that programs can be developed and tested. The major 
difference between the traffic light controller and ZAP would be the peripherals and 
not the microprocessor's capabilities. 

In our example, we could put 8 switches on an input port. To enter information, we 
have only to write a short program that reads the data on port 0 into the accumulator 
and then stores or acts upon it. The chapter on monitor software will address these 

manipulations, but one problem must be solved first: synchronizing peripherals to the 
computer. 

How does the computer know when the data on the switches is or is not valid? And, 
could we make a timer in software or hardware that reads the port every second, on the 
second? Can you, for example, see yourself trying to flip all the switches in time or to 
make the computer wait? 

8-BIT OUTPUT PORT 8-BIT INPUT PORT 

67 66 B5 64 63 82 61 80 67 66 65 64 63 62 61 80 

SW0-SW6 AND PB ARE SPOT 

Figure 5.1 A parallel input/output interlace with LED readout and switch input. 

The most popular method of synchronizing a peripheral that has slow data input to a 
computer with fast program execution is to use "data ready" strobe pulses. (Interrupts 
may also be used but they involve complicated programming and will not be con¬ 
sidered here.) The program is written to read and check the logic level of one bit only. 
By substituting a push button for one of the eight switches, say bit 7, we can simulate 
the strobe. To accomplish this, first set data on the other seven switches; then, with the 
program sitting in a loop checking bit 7, press the push button to generate a logic tran¬ 
sition. The program, sensing that a "data ready" strobe is present, reads in the entire 
port and uses the other 7 bits of data. 

Frequently, it is not practical to limit ourselves to just 7 symbolic interpretations 
when using 7 bits of input. A more logical approach is to code the input and let the 7 
bits represent up to 128 individual symbols. The choice between a coded versus a 
straight parallel input is governed by the application. If the computer is part of a 
burglar alarm, with each input bit representing a door or window switch, then it is im¬ 
portant to know individual and simultaneous bit transitions. In this application, it is 
necessary to have parallel signal input. On the other hand, alpha-numeric entry from a 
typewriter keyboard is by nature serial, one letter at a time. Therefore, nothing is 
gained by using 128 parallel input bits for a 128-key keyboard. A 7-bit code is more 
cost-effective. 
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The most widely used keyboard code is ASCII (American Standard Code for Infor¬ 
mation Interchange). Appendix B lists the code and the characters it represents. Any 
homebrew keyboard should reflect this coding to be compatible with commercially 
available software such as BASIC. 

There are a number of methods that can be used to generate suitable key codes. 
Figures 5.2 and 5.3 reflect hardware and software approaches, respectively. The block 

diagram outlined in figure 5.2 is a hardware scanning system suitable for a 64-key key¬ 
board. A 6-bit counter progressively enables each column while scanning all rows in 
each step. Should any key be pressed, a logic 0 will be routed through the 8-input 
multiplexer to the scan control logic. This signal is used to generate a key-pressed 
strobe (also called data-ready strobe) to the computer. The row and column address 
lines from the counter are read and indicate the binary matrix address of the pressed 
key. Compatibility with the ASCII code is simply a matter of placing the proper key at 

the correct address within the matrix. 
Another suitable encoding method is outlined in figure 5.3. This technique, which 

uses software logic to scan the matrix, should be used only when computer program ex¬ 
ecution speed is not critical. While reducing the circuitry to one chip, the trade-off in 
this approach requires both an input and output port. It functions in the same way as 
figure 5.2. The computer sets a 4-bit column counter code on the decoder. Then it 
searches the parallel input port for the row with the logic level 0 signifying a pressed 
key. While this may seem to be an easy way to decode 128 keys, there are certain soft¬ 

ware considerations. 

Figure 5.2 A matrix keyboard scanner for a 64-key keyboard. 
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♦ 5V 

Figure 5.3 A software-driven 128-key encoder circuit. 

The key-pressed or data-ready strobe in any keyboard serves two purposes: it signi¬ 
fies that data is present and ready, and it is timed so the strobe is not generated until 
after a mechanical debounce time period has elapsed. The reason for the delay is ob¬ 
vious. Remember, these microprocessors can execute 200,000 instructions a second. A 
program written to look for a strobe and read the data would run a hundred times on a 
single keypress because of contact bounce. The mechanical making and breaking of the 
contact could appear like 100 data-ready strobes if we aren't careful. A true data-ready 
strobe is not generated until after a debounce time-out and then it should be fast-rise¬ 
time (<200 ns) pulse with a rate exceeding the cycle time of the computer. The dura¬ 
tion of the pulse should be long enough to allow the scanning program to catch it even 
if it is off doing some other task, and short enough so that the central processor doesn't 
see the same strobe twice. 

There are two techniques to combat the problem of strobe duration. One is to set a 
flip-flop with the rising edge of the strobe and tie the clear line of the flip-flop to an out¬ 
put bit. After reading in the data, the program can clear the "data-ready" condition by 
resetting the flip-flop. This is usually employed in cases where the response time to a 
keyboard or other device is variable. This method also guarantees that an event will be 
registered and not missed due to time delays. Of course, most keyboard encoders do 
not latch their output data. If a key is released, even if the strobe has been set in a flip- 
flop, no data will be present when the computer reads the keyboard. There are ways to 
get around this but they all involve additional hardware. 

Usually the experimenter's problem is reading a strobe twice rather than not waiting 
long enough to acknowledge it. Instead of using a hardware flip-flop, most program¬ 
mers employ a software flag, the second technique in dealing with strobe duration. 
When a key-pressed strobe is sensed, the program sets a flag in a memory location, 

reads the data, then checks the strobe again. If the strobe is high, the flag is checked 
and the data is not read. Only when the strobe returns to a logic zero is the flag reset, 
enabling data input the next time. 

It's not easy to construct keyboard encoders for 64- or 128-key ASCII keyboards. It's 
simpler to use a commercially available, scanning, read-only memory encoder such as 
the one documented in Appendix C6. 

As far as ZAP is concerned, it is important to learn to walk before we run. Most peo¬ 
ple would consider ZAP to be a learning tool that could be eventually expanded into a 
full-blown microcomputer system. A full 128-key ASCII keyboard could prove to be as 
expensive as the entire ZAP computer. To minimize expense and retain the experimen- 
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tal qualities of this endeavor, a limited keyboard, suitable for hexadecimal entry, is 
suggested as the first level of expansion. With a limited number of keys to encode, 
hardwired TTL circuitry offers a reasonable cost advantage over expensive encoder 
read-only memories. 

Figure 5.4 is a hexadecimal keyboard interface designed specifically for the ZAP soft¬ 
ware monitor. A hexadecimal keyboard allows data and instruction entry as 2 digit 
hexadecimal numbers. In addition to the 16 numeric keys, there are 3 command keys 
designated "EXEC" (for execute), "NEXT," and "SHIFT." EXEC and NEXT will be ex¬ 
plained in the monitor section. The SHIFT is similar to a regular keyboard and is used 
to double the number of key codes by allowing a SHIFT 1, SHIFT 2, etc. The particular 
significance of each code will be explained later. 
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Figure 5.4 A hexadecimal keyboard interface. 
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The keyboard required to support the ZAP software monitor has 19 keys. The en¬ 

coder in figure 5.4 is a combination scanner and hard-wired parallel output. Encoding 
depends upon the particular key pressed. The hexadecimal keys 0 thru F are sensed 
through a multiplexed scanner, IC 2 and IC 3. As IC 2 counts, it sequentially places a 
logic 0 on each of the 16 output lines of IC 3. If any key is pressed, that low level is 
routed back to 1C 4 and stops the clock. The counter is then locked on the address of 
the particular key being pressed. The same action that stops the clock also triggers a 
one-shot IC 5 which generates a key-pressed strobe. The output lines BO thru B3 will 
contain the binary value of the pressed key while bit 7 is reserved for the strobe. The 
three function keys are directly tied to input bits 4, 5, and 6. Three sections of IC 1 
serve to dampen contact bounce. The EXEC and NEXT are tied in so they will generate 
a key-pressed strobe when activated. Because the shift key is always used in conjuction 
with another key, it is not connected to the strobe circuit. 

It is important to recognize that the coding of this 19-key circuit is not ASCII. An 
ASCII keyboard cannot be used directly with the software monitor outlined in this 
book, unless you use only those ASCII keys that correspond to the coding of figure 5.4, 
or rewrite the software monitor to accept ASCII rather than binary codes for each key. 

n. ADDING A VISUAL DISPLAY 

Once a keyboard has been added to ZAP, we are ready for program development. 
The other key ingredient is a visual display that allows the programmer to examine in¬ 
struction statements and data. The least costly configuration is an LED display, prefer¬ 
ably hexadecimal because the software monitor is written that way. For the octal die- 
hards, I've also included an octal display. 

Hexadecimal displays may seem a trivial addition to an expensive computer system, 
but it is sometimes these little helpful add-ons that make program debugging easier. I 
don't intend that it should replace a CRT, but it's a necessary tool when debugging a 
program and a necessity for using the ZAP monitor. It will never replace a stepper or a 
break-point-monitor program, but it's great to display keyboard or I/O data quickly 
with a single output instruction. 

There are many ways to display hexadecimal on a 7-segment LED. Figure 5.5 is an 
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b) 
INPUT CODE 82S23 PROGRAM 7-SEGMENT DISPLAY 

DCBA D7D6D5D4D3D2D1D0 
0000 01110111 0 
0001 01000001 1 
0010 01101110 2 
0011 01101011 3 
0100 01011001 4 
0101 00111011 5 
0110 00111111 6 
0111 01100001 7 
1000 01111111 8 
1001 01111001 9 
1010 01111101 A 
1011 00011111 b 
1100 00110110 C 
1101 01001111 d 
1110 00111110 E 
1111 00111100 F 

Figure 5.5 A possible method for a hexadecimal lalch/decoder/driver using a standard 7-segment 
LED. 

a) This entire circuit would be needed to replace one HP7340. CS on the 82S23 can perform 
the blanking function. 

b) The program for the 82S23 (1C 2). 

example of the usual brute force method using a PROM as a hexadecimal decoder. (A 
method of programming the 82S23 was described in the article in the November 1975 
issue of BYTE magazine entitled "A Versatile Read-Only Memory Programmer/' if you 
choose to use this circuit.) 

However, this approach uses an excessive number of components and most people 
would not want to program a PROM. One alternative is to allow the computer to per¬ 

form the decoding and drive the 7-segment display through the transistors directly 
from a latched 8-bit output port. Another way puts additional logic around a standard 
7-segment decoder driver for the extra requirements. The former case necessitates a 
computer program while the latter can involve as many components as figure 5.5. 

Fortunately, there is a product on the market that can solve the problem. It is the 
HP7340 hexadecimal LED display (from Hewlett Packard; equivalent displays are 
available from other manufacturers). These hexadecimal digits depart from the stan¬ 
dard 7-segment format by using dots instead of bars and being capable of displaying a 

capital "B" and "D" in hexadecimal. This is accomplished by controlling the comer 
dots, which gives the appearance of "rounding." This ability discriminates a "B" from 
an "8" or a "D" from a "0." There are 16 distinctly different characters. 

An additional feature of the HP7340 is that each display circuit contains a 4-bit latch 
and decoder/driver. This allows the display to be attached directly to the data bus. The 
result is a single 8-pin hexadecimal display that successfully accomplishes the function 
of all the circuitry of figure 5.5. The specifications of the individual pins are given in 
figure 5.6. 

5080-7340 PIN CONNECTIONS 

PIN FUNCTION 

1 INPUT B 

2 INPUT C 

3 INPUT 0 

4 BLANK CONTROL (8LANK««-5V) 

5 LATCH ENABLE (LATCH *0V) 

6 GROUND 

7 +5 VOLTS 

8 INPUT A 

Figure 5.6 The pin layout and functions for the HP7340 BCD to hexadecimal display. Similar displays 
are produced by Dialite and Texas Instruments. 

REAR VIEW 

-0-EHlH3- 

USD 
5082-7340 

XX XX 
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Figures 5.7 and 5.8 demonstrate how the HP7340 can be configured to function as a 
2-digit hexadecimal output port or a 3-digit octal port. An 8-bit latch is not required 
because it already contains one. The HP7340s can be attached to the data bus as simply 
as any other parallel output port and are strobed from the chip-select decoder outlined 
earlier in the section on I/O decoding. 

To utilize the software monitor properly, 6 hexadecimal displays (separated into 3 
single byte displays) are necessary. Three bytes are required to display a particular H 
and L address and the data contents of that location. The 6 hexadecimal displays 
should have the following decoded strobes: 

Output Port # Logic Line Display Parameter ic# 
5 DS5WR MSD address field 30, 31 
6 DS6WR LSD address field 28, 29 
7 DS7WR data field 26, 27 

MSD — Most Significant Digit 
LSD — Least Significant Digit 

A more complete description of each display function is described within the 
monitor section, and a completed schematic showing how the 6 displays are attached 
to the data bus is illustrated in figure 5.9. 

Figure 5.7 An HP7340 hexadecimal latch/decoder/driver display. 

Figure 5.8 An HP7340 octal latch/decoder/driver display. The HP5082-7300 can be substituted for the 
HP5Q82-7340 in octal display applications. The HP7300 displays numerics only. 
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. SERIAL INTERFACE 

A serial communication capability is not absolutely necessary to make ZAP work, 
although the software monitor supplied in this book supports a serial interface. 

First a word about concept before we pursue the design details. Why would ZAP 
need to communicate? When we discuss the serial cassette interface, you will under¬ 
stand that there are more advantages to it than appear presently. If future expansion is 
in mind or commercially made peripherals such as a CRT or printer are ever added, 
their interface will most likely be serial. 

This last sentence is significant. Realize that I said nothing about communicating 
with another computer. While talking to another computer over telephone lines re¬ 
quires a serial link, in general, standard peripherals such as CRTs and printers also 
"talk" serially. Therefore, by designing a serial port to accommodate a printer, we also 
gain the ability to talk with another computer. 

Communication is simply the transfer of information from one device to another. In 
the case of a CRT display unit, the computer sends character information for screen 
display while the keyboard relays the user's input to the computer. Each end of the full- 
duplex communication line must have a transmitter and a receiver. In both cases, the 

information being transferred is ASCII data probably consisting of a 7-bit code and, in 
some cases, an additional parity bit for error checking. This 7-bit data (ignoring the 
parity bit) will appear on the lines of a parallel port. These 7 lines plus a ground 
reference and a strobe (remember we have to tell the receiver when the data is valid) 
can be brought out to the CRT input. Keeping that as a dedicated line from the comput¬ 
er to the CRT, we now want a similar line between the keyboard output and an 8-bit 
parallel port on the computer. This requires an additional 9 lines. To further com¬ 
plicate matters, let's separate the terminal and the computer by 300 to 400 feet, as 
might happen in some commercial computer systems. The result is that 400 feet of 18 
lead (17 if you combine ground references) cable will cost more than the terminal. Also 
realize that the TTL parallel output should not be used to drive lines longer than 20 feet 
without special buffers/drivers; otherwise data errors could occur. 

The solution to this costly wiring problem is to use serial rather than parallel com¬ 
munication. The parallel data is converted to serial and sent one bit at a time down a 
single twisted pair wire. If buffers/drivers are needed for long distances, less are re¬ 
quired with the serial approach. Specially encoded "start" and "stop" bits included in 
the serial transmission notify the receiver that valid data is being sent. For the above 
example, only two pairs of wire are needed to perform "full-duplex" interaction (see 
figure 5.10). In "half-duplex" mode this can be reduced to a single twisted pair, but syn¬ 
chronization of the shared communication line is more complicated. All serial 
transmission references I shall make will be limited to full-duplex operation. 

Figure 5.10 A block diagram of a full-duplex RS-232C communication link. 
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Now that we agree that the communication should be serial, how do we accomplish 

the parallel to serial conversion? The answer is a device called a UART (Universal 
Asynchronous Receiver/Transmitter). Appendix C7 gives the specification informa¬ 

tion for the SMC COM2017 UART which is equivalent in function to the AY-5-1013A 
(General Instruments). To minimize power supply requirements, a single +5 V 
AY-3-1015 or TR1602 (Western Digital) can be substituted as I have done. The only 

change from the specification sheet is that pin #2 is no longer tied to —12 V. 
A UART's internal structure consists of a separate parallel-to-serial transmitter and 

serial-to-parallel receiver joined by common programming pins. This means that the 
two sections of the UART can be used independently, provided they adhere to the same 
bit format that is hard-wire or software selectable on the chip. 

The transmission from the computer to the CRT is done asynchronously and in one 
direction only. The computer likewise receives data directly from the keyboard 
through a dedicated line. As far as the computer is concerned, after reconversion to 
parallel in the UART, this input device is communicating parallel data. 

Actual data transmission follows the asynchronous serial format illustrated in figure 
5.11. Using the keyboard as an example, when no data is being transmitted, the data 
line is sitting at a mark (or "1" level) waiting for a key-pressed strobe. A key-pressed 
strobe is a 1 to 5 ms positive pulse (it can be as short as 200 ns) indicating that a key¬ 
board key has been pressed, and that an ASCII code of that key is available for 
transmission. This key-pressed strobe, which is attached to the data strobe of the 
UART, causes the ASCII data to be loaded into a parallel storage buffer and starts the 
UART transmission cycle. The serial output will then make a transition from a 1 to a 0. 
This mark-to-0 start bit is 1 clock period long and indicates the beginning of a serially 
transmitted word. Following the start bit, up to 8 bits of data follow, each data bit tak¬ 
ing 1 clock period. At the conclusion of the data bits, parity and stop bits are output by 
the UART to signify the end of transmission. If another key is pressed, the process 
repeats itself. 
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Figure 5.11 A single data byte as it is transmitted in asynchronous serial format. 

On the receiving end, the UART is continuously monitoring the serial input line for 
the start bit. Upon its occurrence, the 8 bits of data are slipped into a register and the 
parity checked. At the completion of the serial entry, an output signifying data avail¬ 
able is set by the UART and can be used as an input strobe to the computer. The UART 
will not process additional serial inputs unless the data available flag is acknowledged, 
and the data available reset line is strobed. Actual transmission can include or exclude 
parity, have 1 or 2 stop-bits, and data can be in 5- to 8-bit words. These options are pin 
selectable. 

The following is a pin function description for the AY-5-1013, COM2017, or 
AY-3-1015. 

Pin § NAME SYMBOL FUNCTION 

1 Vcc Power Supply Vcc +5 V Supply 

2 Vcc Power Supply Vcc —12 V Supply (not con¬ 
nected on AY-3-1015) 

3 Ground GND Ground 

4 Received Data Enable RDE A logic "0" on the receivei 
enable line places the re¬ 
ceived data onto the output 
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5 Received Data Bits 
thru 
12 

13 Parity Error 

14 Framing Error 

15 Over-Run 

16 Status Word Enable 

17 Receiver Clock 

18 Reset Data Available 

19 Data Available 

20 Serial Input 

21 External Reset 

22 Transmitter Buffer Empty 

lines. 

RD8 These are the eight data 
thru output lines. Received char- 
RDl acters are right justified; the 

LSB always appears on RD1. 
These lines have three-state 
outputs. 

PE This line goes to a logic "1" 
if the received character 
parity does not agree with 
the selected parity. Three- 
state. 

FE This line goes to a logic "1" 
if the received character has 
no valid stop bit. Three- 
state. 

OR This line goes to a logic "1" 
if the previously received 
character is not read (DAV 
line not reset) before the 
present character is trans¬ 

ferred to the receiver hold¬ 
ing register. Three-state. 

SWE A logic "0" on this line 
places the status word bits 
(PE, FE, OR, DAV, TBMT) 
onto the output lines. Three- 
state. 

RCP This line should have as an 
input a clock whose fre¬ 
quency is 16 times (16 X) 
the desired receiver data 
rate. 

RDAV A logic "0" will reset the 

DAV line. 

DAV This line goes to a logic "1" 
when an entire character 
has been received and trans¬ 
ferred to the receiver hold¬ 
ing register. Three-state. 

SI This line accepts the serial 
bit input stream. A marking 
(logic "1") to spacing (logic 
"0") transition is required 
for initiation of data recep¬ 
tion. 

XR Resets shift registers. Sets 
SO, EOC, and TBMT to a 
logic "1." Resets DAV and 
error flags to "0." Clears in¬ 
put data buffer. Must be 
tied to logic "0" when not in 
use. 

TBMT The transmitter buffer 
empty flag goes to logic "1" 
when the data bits holding 
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23 Data Strobe 

24 End of Character 

25 Serial Output 

26 Data Bit Inputs 
thru 
33 

34 Control Strobe 

35 No Parity 

36 Number of Stop Bits 

37 Number of Bits/ 
38 Characters 

register may be loaded with 
another character. Three- 
state. 

DS A strobe on this line will 
enter the data bits into the 
data bits holding register. 
Initial data transmission is 
initiated by the rising edge 
of DS. Data must be stable 
during entire strobe. 

EOC This line goes to a logic "1" 
each time a full character is 
transmitted. It remains at 
this level until the start of 
transmission of the next 
character. 

SO This line will serially, bit by 
bit, provide the entire trans¬ 
mitted character. It will re¬ 
main at logic "1" when no 

data is being transmitted. 

BD1 There are up to eight data 
thru bit input lines available. 
BD8 

CS A logic "1" on this lead will 
enter the control bits (EPS, 
NB1, NB2, TSB, NP) into 
the control bits holding 
register. This line can be 
strobed or hard-wired to a 
logic "1" level. 

NP A logic "1" on this lead will 
eliminate the parity bit 
from the transmitted and 
received character (no PE 
indication). The stop bit(s) 
will immediately follow the 
last data bit. If not used, 
this lead must be tied to a 
logic "0." 

TSB This lead will select the 
number of stop bits, one or 
two, to be appended im¬ 
mediately after the parity 
bit. A logic "0" will insert 2 
stop bits. A logic "1" inserts 
1 stop bit. 

NB2, These two leads will be in- 
NBl temally decoded to select 

either 5, 6, 7 or 8 data bits/ 
character. 

NB2 NBl Bits/Character 

0 0 5 
0 1 6 
10 7 
11 8 
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EPS 39 Odd/Even Parity 
Select 

40 Transmitter Clock TCP 

The logic level on this pin 
selects the type of parity 
that will be appended im¬ 
mediately after the data 
bits. It also determines the 
parity that will be checked 
by the receiver. A logic "0" 
will insert odd parity, and a 
logic "1" will insert even 
parity. 

This line should have as an 
input a clock whose fre¬ 
quency is 16 times (16 X) 

the desired transmitter data 
rate. 

The final serial interface configuration is shown in figure 5.12. Because a UART is a 
three-state device, it can be attached directly to the data bus. Data is written into or 

read from it 8 bits parallel as any other I/O port manipulation. To the computer, the 
UART appears as one output and two input registers: status, transmitted data, and 
received data. As with all data bus manipulations, data transfers are synchronized 
through decoded strobes. The ZAP software monitor uses three port addresses to coor¬ 
dinate the hardware and software. To be compatible, they should be wired as follows: 

Port # Logic Line Signal 

02 INPUT DS2RD 

03 INPUT DS3RD 
02 OUTPUT DS2WR 

READ DATA 
READ STATUS 
WRITE DATA 

The primary focus of this chapter is the hardware section of the serial interface. 
When connected directly to the data bus in this manner, there is no way to operate the 
UART except under program control. Explanation of the protocol and the significance 
of each UART register can be found in the section on the ZAP monitor. 

There are two remaining hardware considerations: data rate and transmission signal 
level. Data rate can be loosely termed as bits per second and refers to the transmission 
speed along the twisted pair. Keep in mind that at lower data rates, only 8 of 11 bits of 
each transmitted word are data; 1 start bit and 2 stop bits are used. While any transmis¬ 
sion frequency can be set on a UART, by adjusting the clock rate there are eight fre¬ 
quently used standard asynchronous transmission rates: 

110 bps 
150 bps 
300 bps 
600 bps 

1200 bps 
2400 bps 
4800 bps 
9600 bps 

Using a special data rate generator chip and switch selector network shown in figure 
5.12, ZAP can accommodate any of these specific frequencies. In normal operation, 
most teletypes run at 110 bps, printers such as the DECwriter II at 300 bps, acoustic 
telephone modems at 300 bps, and video terminals from 1200 to 19,200 bps. As you 
can see, in theory, we can communicate with them. 

Transmission rate is only part of inter-communication prerequisites. A computer 
could be all TTL level logic while a peripheral used 15 V CMOS. They would be com¬ 
pletely incompatible. Therefore, it is necessary to have one additional standard that 
governs the signal level of the transmissions. The most widely accepted and generally 
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used standard is EIA RS-232C. 
Although TTL levels could be used for communication, they are not suitable for 

carrying signals more than 10 or 20 feet. The problem stems from the fact that only 2 V 
separates a logic 1 or 0 rather than speed or drive capabilities. With only 2 V immunity 

to noise, communication would be susceptible to interference from motors and 
switches. 

An industrial committee agreed to a standard interface to solve this problem as well 
as to suggest standards for the industry. Modem equipment uses EIA RS-232C. This 
specification applies not only to the specific voltages assigned to logic 0 and 1, but also 
to the type of plug, pin assignments, source and load impedances, as well as to a vari¬ 
ety of other related functions. 

The signal levels of RS-232C are bipolar and use a negative voltage between —3 and 
— 15 V to represent a logic 1 and a positive 3 to 15 V to represent a logic 0. The region 
between —3 V and +3 V helps our noise immunity and is a dead region. Even though 
+ and —15 V would provide optimum transmission, +3 V and —7 V are also accept¬ 
able. However, try to maintain equal bipolar levels over long distances. 

The basic ZAP computer requires +12, +5, and —12 V (—5 V is necessary for the 
EPROM memory and is derived from the —12 V supply) supplies for operation. We 
can use the positive and negative supplies to generate RS-232C voltage levels in a num¬ 

ber of ways. Figure 5.13 illustrates some RS-232C drivers, and figure 5.14 shows a cou¬ 
ple of receiver circuits. One from each selection would have to be attached to the serial 
I/O pins of the UART for it to have complete RS-232C compatibility. 

♦ 5V ♦ 5 TO +12V 

♦ 5V 

-12V 

Figure 5.13 TTL to RS-232C drivers. 
a) Using two transistors as a level shifter. 
b) Using an opto-isolator as a level shifter. 
c) Using a standard RS-232C line driver. 

PINOUT OF MCI468 
TTL TO RS-232C ORIVER 

TTL 
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PINOUT OF MCI489 
RS-232C TO TTL RECEIVER 

+ 5V 

TTL 

Figure 5.14 RS-232C to TTL receivers. 
a) Using a transistor. 
b) Using a standard RS-232C line receiver. 

RS-232C CTl TTL RS-232C CTL TTL 

IV. CASSETTE STORAGE INTERFACE 

The last but by no means least of the enhancements we should add to ZAP is a cas¬ 
sette interface. With the keyboard and display, an operator will be able to write some 
elaborate programs but, unless they are transferred into read-only memory storage, 
they will be lost when power is turned off. Of course, the computer's power can be left 
on constantly. But what if you want to develop a second program that must occupy the 
same memory address space? The preferable solution is to have some medium that tem¬ 
porarily stores large memory blocks. 

In large computer systems, this capability is achieved through hard-disk and 9-track 
magnetic tape systems. These high-speed, high-volume media are beyond the personal 
computing budget, but their value in large systems is obvious. A low price, lower per¬ 
formance alternative is an audio cassette storage system. 

In general, a cassette storage interface consists of three major subsystems: a serial 
transmitter/receiver; a hardware assembly that converts serial TTL data so it's audio 
cassette compatible, and an application program that keeps track of what's going out 
to tape and can load it back into the correct place. The basic configuration is illustrated 
in block diagram form in figure 5.15. 

UART CASSETTE INTERFACE 

ZAP 
COMPUTER 

cn 

03 

cr 
S 

7 
oo 

I- 

U 
PARALLEL 
TO 
SERIAL 
CONVERTER 

SERIAL 
TO 
PARALLEL 
converter 

jJlGURE^lZ 

TTL SERIAL 
OUTPUT 

FIGURE 5.16 

FIGURE 5.17 

RECORDER 

AUX INPUT 

EARPHONE 

Figure 5.15 A block diagram of an audio cassette storage system. 
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The serial transmitter/receiver section is nothing more than the LIART serial inter¬ 
face which we have already added. With MC1488 and 89 converters on its serial lines, 

it communicates via a RS-232C. However, if you attach a cassette interface to these 
lines, it can double as a storage device. An additional benefit is that serial data gener¬ 

ated by the UART will offer some compatibility between personal computing systems; 
standard data rates and standard serial communication protocol will promote this. 

The output of the UART is TTL. Even with the RS-232C drivers, the logic output is 
still a DC level. Because audio recorders cannot record DC, the UART output must be 
converted in some way. The solution is FSK (frequency shift keying). The TTL output 
from the UART is converted into audio tones. One frequency represents a logic 0, and 
a second represents a logic 1. 

Figure 5.16 shows a circuit that will produce frequency shift keyed tones. A 4800 Hz 
reference frequency is derived from the MC14411 data rate generator previously in¬ 
stalled. IC 2A and 2B function as a programmable divider chain. With a TTL logic 1 on 
the input IC 2 divides the 4800 Hz by 2, giving a 2400 Hz output. When the input level 
is changed to logic 0, it divides by 4, producing a 1200 Hz output. The FSK frequencies 
are generated at a serial output rate of 300 bps and connected directly to the recorder 

through the microphone or auxiliary input. (These frequencies and data rate are often 
referred to as the Kansas City Standard.) 

♦ 5V 

Figure 5.16 A 300 bps serial output driver to an audio recorder. 

Getting the recorded tones off the audio tape requires the circuit shown in figure 
5.17. In general, it consists of a pair of band-pass filters and a voltage comparator. The 
recorder is set to an output level of approximately 1 V peak to peak. This level is not 
critical because it is amplified and limited as it passes through IC 1. IC 2 and IC 3 are 
band-pass filters with center frequencies of 2400 Hz and 1200 Hz, respectively. The 
output of IC 1 is fed into both of them, but should be passed by only one. IC 4 com¬ 

pares the outputs of the two filters and generates a TTL logic 1 when a 2400 Hz tone is 
received and a logic 0 with a 1200 Hz tone. Tuning the interface will be explained later. 

The choice of the FSK frequencies and data rate are not left to chance. They are a 
function of receiver response speed and recorder bandwidth. Most cassette recorders 
have a frequency response of around 8 kHz. Less expensive units can be as low as 5 or 
6 kHz. It is unwise to try to record tones at this upper limit. The center of the frequency 
range offers more reliability, so the logic "1" FSK tone should be set less than 3 kHz 
(2400 Hz in our case). In addition, it takes time for the receiver to recognize a particular 
frequency. The circuit of figure 5.17 takes 2 or 3 cycles to respond. This means that at 
the low frequency of 1200 Hz, each logic 0 bit will need 3 cycles at 1200 Hz to be recog¬ 
nized. 
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If we consider a worst case condition of sending all zeros, the transmission rate 
would have to be slower than 400 bps to be accurately received. The closest standard 
data rate to this value is 300 bps. Raising the 1200 Hz tone to increase the transmission 
speed only complicates the filter design the closer it is to 2400 Hz. This interface has 
been tested at 600 bps but it requires precise alignment to achieve faster speeds. The 
low frequencies and moderate data rate are chosen specifically to increase the prob¬ 
ability of successful construction rather than to compete with high speed data storage 
systems. 

The final point to consider is the software that runs the hardware. The ZAP monitor, 
as it now stands, does not directly support a cassette interface even though it does han¬ 
dle all the serial housekeeping. Until you write the cassette driver into an EPROM, you 
will have to type in a short "bootstrap" program. To read the cassette, the logic of the 
program would follow the flow diagram in figure 5.18. 

First, a pointer is set in the H and L registers to designate where the cassette data will 
be stored in programmable memory and an address where it will end. Next, taking ad¬ 
vantage of the serial communication routine in the ZAP monitor, we simply call 
"SERIAL IN" which returns with a byte of data from the UART. This byte is stored in 
memory, and the HL register pair is decremented and compared to a predetermined 
stop address. If not equal, it repeats the process of getting another byte of data. 

Storing memory is equally straightforward and is diagrammed in figure 5.19. Again, 
a pointer is set to the beginning and the memory area to be written to tape. Next, the 
"SERIAL OUT" routine is called from the ZAP monitor, which sends the byte of data 
to the cassette. Finally, the pointer is decremented and compared to the end address to 
see if more data is to be written. 

These are relatively easy routines to write and short enough that they may be 
squeezed into the few empty bytes within the ZAP monitor EPROM. Whatever the 
case, you will soon realize the versatility and capability that such a simple interface 
adds to a computer system. The 2 K of programmable memory on the basic ZAP will 
become resident program space while the cassette will be a potential megabyte file stor¬ 
age system for it. 

Figure 5.18 A flowchart of software to read a cassette. 
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Figure 5.19 A flowchart of software to write a cassette. 

TUNING THE CASSETTE INTERFACE 

To test the cassette interface, it is necessary first to construct the circuit from figure 
5.16. Use a frequency counter to determine that the input to IC 1, pin 5 is 4800 Hz. 
With no UART installed, the frequency at pin 1 of IC 2b should be 2400 Hz. Ground¬ 

ing IC 2b, pin 1 should change this output to 1200 Hz. In both cases, voltages of 1 and 
0.1 V should be present on the cassette auxiliary and microphone inputs respectively. 

The receiver uses the frequencies generated by the output section previously de¬ 
scribed to set the calibration. With the output section set to 2400 Hz, attach a jumper 
from the output interface to the input of the receiver circuit (figure 5.17). Using an 
oscilloscope, check that the waveform at IC 1, pin 6 is a square wave of 2400 Hz. Next, 
with the scope attached to IC 2, pin 6, adjust R1 until the voltage at that point is max¬ 
imum. Moving the scope probe to IC 3, pin 6, and changing the input frequency to 
1200 Hz, repeat the procedure by adjusting R2 until the voltage peaks. 

R3 sets the point at which the comparator switches between logic levels when the in¬ 
put frequencies change. The proper way to set this is to use a function generator on the 
input and set R3 to switch at exactly 1800 Hz. The result should be clean logic level 
switching at IC 4, pin 6, as the frequency is cycled between 1200 Hz and 2400 Hz. Gen¬ 
erally speaking, the comparator setting is not especially critical. 
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CHAPTER 6 
THE ZAP MONITOR 
SOFTWARE 

The function of an operating system is to provide the programmer with a set of tools 
to help him in developing, debugging and executing a program. In general, the operat¬ 
ing system assists the programmer by managing the resources of the computer, and by 
eliminating his involvement with repetitive machine-code manipulations. Operating 
systems span a broad spectrum of complexity. Small systems, for example, provide 
only a rudimentary means for a programmer to enter and read 8-bit data from mem¬ 
ory; large systems, on the other hand, can dynamically manage the allocation of all 
memory and peripherals. 

Large systems allocate computer resources to more than one user in a multiprogram¬ 
ming, multitasking, or a time sharing environment. A system of this magnitude far ex¬ 
ceeds the capabilities of the computer described in this book. This being the case, what 
would be a suitable operating system for the ZAP computer? As previously stated, the 
objective of an operating system is to manage the resources of the computer. The ZAP 
computer described in the previous chapters, and enhanced with the minimum periph¬ 
erals, contains the following resources: 

• Z80 microprocessor 
• 1024 bytes of EPROM memory 
• 1024 bytes of programmable memory (2048 optional) 
• Nineteen-key keyboard 
• Two-character data display 

• Four-character address display 
• UART for serial I/O 

The operating system must provide access to these resources and give the user a way 
to manage them during execution of programs. The operating system designed for ZAP 
will include the following facilities and functions: 

1. Cold start 
2. Warm start 
3. Memory display and replace 
4. Register display and replace 
5. Execute (begin program execution at a 

designated point) 
6. Serial input and output 

Each will be explained in detail concerning its functions and program implementa¬ 
tion. 

I. OPERATING SYSTEM FUNCTIONS 

Cold Start Operation 

The operating system must be available immediately after power is applied to 
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the computer. In the past, some systems provided this capability by storing, in 
read-only memory, a small "bootstrap" routine. This bootstrap routine was then 
used to load the operating system into memory from another device, such as a 
paper-tape reader or a cassette recorder. New technology eliminates this tedious 
step. The operating system for your computer resides permanently on the 
EPROM (erasable-programmable read-only memory) chip and is ready to be ex¬ 
ecuted as soon as power is applied and the "RESET" button is pressed. The 
depression and release of the "RESET" button sets the Z80 PC (program counter) 
to zero. 

With the next machine cycle, the processor begins execution of the instruction 
located at 00,6 (location 00 hexadecimal) in memory. The operating system of the 
Z80 microprocessor provides the instructions to begin execution. This particular 
series of program instructions constitutes a "cold start" procedure and establishes 
the required start up conditions for the operating system. The operating system 
then initializes the SP (stack pointer) to an area in programmable memory for 

maintaining the "push-down/pop-up" stack. This stack is required for execution 
of any of the "RESTART" and "CALL" instructions provided by the Z80 instruc¬ 
tion set. If it were not initialized before the execution of a "CALL" or "RESTART" 
instruction, the effects of the instruction would be unpredictable. In this 
operating system, the stack pointer is set to programmable memory location 
07C4,«. 

Warm Start Operation 

After initializing the SP address, the operating system enters a command 
recognition module. Before discussing this feature of the operating system, some 
of the other restart features should be explained. The Z80 gives the user eight 
address-vectored "RESTART" instructions (see Chapter 3 for a description of the 
instructions). For example, the execution of a RST 08,6 will store the current PC 
on the "STACK" and program execution will begin at location 08,6. 

The following "RESTART" instructions are available within the operating 
system: 

RST 10,6 
RST 18,6 
RST 20,6 
RST 28,6 
RST 30,6 
RST 38,6 

The execution of any of these instructions causes the operating system to jump 
to a location in programmable memory. At that location the user executes a jump 
instruction to vector the computer to a new location. 

RST 00,6 and RST 08,6 have been reserved for use by the operating system for 
special functions and will not result in a jump to a location in programmable 
memory. These two RST instructions can be utilized in the debugging of pro¬ 
grams. RST 00,6 will perform the same function as pressing the "RESET" button; 
or it will reinitialize the stack pointer and enter the command recognition module 
through execution of the "cold start" routine. 

The execution of a RST 08,6 by the Z80 will result in the "warm start" module 
being entered. This module saves the existing data in all the registers in the "regis¬ 
ter save area" located in programmable memory (see the listing of the ZAP oper¬ 
ating system in Appendix D). The module will also extract from the stack the 
user's restart address and save this in the register save area. The operating system 
then enters the command recognition mode to wait for the next command. The 
use of this feature allows the programmer to save register, pointer, flag, and pro¬ 
gram counter data, prior to using any additional debugging features in the oper¬ 
ating system. A detailed description of the "warm start" module is provided in 

section II.2 of this chapter. 
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Program Development and Debugging Services 

The cold start and warm start procedures exit to the command input sequence. 
With these command procedures, the programmer is able to examine and replace 

data in memory or registers, and to begin execution at a user-specified location. 
Upon entry to the command input module, the operating system displays "FFFF" 
on the address section, and "FF" on the data section of the six character hexa¬ 

decimal LED display. The user then implements one of the three command func¬ 
tions by holding down the "SHIFT" key and pressing the "0," "1," or "2" keys. A 
"SHIFT 0" (the SHIFT key and 0 key are pressed simultaneously) tells the 
operating system to enter the memory display and replace function; "SHIFT 1" 
enters the register display and replace function, and a "SHIFT 2" enters the go ex¬ 
ecute module. 

Memory Display and Replace 

The memory display and replace function allows the user to examine the con¬ 
tents of both read-only memory and programmable memory. During operation 
the address and the contents of that location are shown on the respective dis¬ 
plays. 

The memory display and replace function is entered by executing a "SHIFT 0" 
when the system is in the command recognition mode (address display = FFFF 
and data display = FF). At this time, the operating system is waiting for the user 
to enter an address of one to four hexadecimal digits from the keyboard. As 
entered, these shift into the display area sequentially. If more than four digits are 
entered, only the last 4-digit value (shown in the address display) will be used as 
the address. Inputting of address data is terminated by pressing the "NEXT" key. 
This causes the contents of the indicated address to be displayed on the two digit 

hexadecimal data display. If the user wishes to display subsequent memory loca¬ 
tions, he need only continue pressing the "NEXT" key. This will step the memory 
display program to the next higher memory location and display the new address 
and memory contents. If the user wishes to change the contents of a displayed 
memory location, he may enter new data by typing a two-digit value for that 

location before hitting the next key. This new value is loaded into the indicated 
address when the "NEXT" key is pressed. Pressing the "NEXT" key continues the 
sequential display of address and data. 

Termination of this function is accomplished by pressing the '"RESET" or 
"EXEC" buttons. Control is returned to the command recognition portion of the 
operating system. 

Display Memory Example 

Key Address Display Data Display 

FFFF FF 
SHIFT 0" 0000 FF 

1 0001 FF 
A 001A FF 
F 01AF FF 

"NEXT" 01AF 01 
"NEXT" 01B0 1C 
"RESET" FFFF FF 

Memory Replace Example 

Key Address Display Data Display 

FFFF FF 
SHIFT 0" 0000 FF 

4 0004 FF 
0 0040 FF 
0 0400 FF 
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"NEXT" 0400 01 
2 0400 02 
1 0400 21 

"NEXT" 0401 05 
6 0401 06 
A 

"EXEC" 
0401 6A 

The results will be: Address Data 

0400 21 
0401 6A 

Register Display and Replace 

The register display and replace function allows the user to examine and 
change the contents of the saved Z80 registers. This is accomplished by executing 
a RST 1 (warm start) during the execution of the program. During execution of 
this function, the contents of the registers are shown on the address display. 
Eight-bit registers will be displayed on the lower two digits of the address display. 
(The upper two digits will be zeros during the display of 8-bit registers.) A code 
that indicates which register is being displayed is shown on the data display. 
Table 6.1 describes the codes that have been assigned to the register display and 
replace function, as well as the key that initiates a particular register display se- 
quence. 

Code Z80 Register Initiating Key 
(shown on data display) (shown on address display) 

02 IX 2 
03 IY 3 
04 SP 4 
05 PC 5 
06 I 6 
07 R 7 

08 L 8 
09 H 9 
0A A A 
0B B B 
OC C C 
0D D D 
0E E E 
OF F F 
40 1/ "SHIFT 0" 
41 H' "SHIFT 1" 
42 A' "SHIFT 2" 
43 B' "SHIFT 3" 
44 C "SHIFT 4" 
45 D' "SHIFT 5" 
46 E' "SHIFT 6" 

47 F “SHIFT 7“ 

Table 6.1 Display code/Z80 register/initiating key correspondence. 

The register display and replace function is entered by pressing a "SHIFT 1" 
when the system is in the command recognition mode (address display = FFFF 
and data display ™ FF). At this time the operating system is waiting for the pro¬ 
grammer to enter the one-digit register code (see table 6.1). If more than one digit 
is entered, only the last code indicated on the data display will be used as the reg- 
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ister identifier. When the central processor detects that the "NEXT" key has been 
depressed, the contents of the indicated register are displayed on the address dis¬ 
play. 

If the user wishes to display subsequent registers he need only press the 
'NEXT" key. This causes the next register to come up with the register code and 
its contents. To change the contents of a displayed register the value is entered 
and loaded when the 'NEXT" key is pressed. For 16-bit registers, the last four 

hexadecimal digits will be accepted if more than four characters have been 
entered. For 8-bit registers the last two hexadecimal digits will be accepted. When 
replacing register data, the 'NEXT" key also causes the register code to be in¬ 
dexed to the next register (see table 6.1) and its contents to be displayed. 

The user may terminate this function by pressing the "EXEC" key. Control is 
returned to the command recognition portion of the operating system. 

Display Register Example 

Key Data Display Address Display 
(register code) (register contents) 

FF FFFF 
"SHIFT 1" 00 FFFF 

A 0A FFFF 
'NEXT" 0A 005C 
'NEXT" OB 0063 
"RESET" FF FFFF 

Register Replace Example 

Key Data Display Address Display 
(register code) (register contents) 

FF FFFF 
"SHIFT 1" 00 FFFF 

5 05 FFFF 
'NEXT" 05 043A 

4 05 0004 
2 05 0042 
C 05 042C 

'NEXT" 06 00FF 
'NEXT" 07 0003 
"EXEC" 

Co Execute ("EXEC") 

The "go execute" ("EXEC") function allows the user to change the contents of 
the PC (program counter) register in order to direct execution of instructions at 
the user-selected address. 

The "go execute" function is entered by pressing a "SHIFT 2" when the system 
is in the command recognition mode. Now the user must enter an address of one 
to four hexadecimal digits. If more than four digits are entered, only the value 
shown in the address display is used as the address to begin program execution. 
Execution begins when the 'NEXT" or "EXEC" keys are pressed. This causes the 
Z80 registers to be stored in the register save area (see the operating system listing 
in Appendix D) and execution begins at the user-specified address. 
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Key 

GO EXECUTE Example 

Address Display Data Display 

FFFF FF 
"SHIFT 2" 0000 FF 

1 0001 FF 
A 001A FF 
C 01AC FF 
F 1ACF FF 

"NEXT" 
or 

"EXEC" 

Serial I/O Services 

The ZAP computer includes a serial input/output capability that is imple¬ 
mented with a UART. This interface allows serial communication between the 
computer and peripheral devices such as a printer or a CRT. To aid the user in 
utilizing this capability, the operating system has a UART diagnostic module, a 
serial input module, and a serial output module. The input and output modules 
are set up as subroutines that can be called during program execution and that are 
not necessarily keyboard and display limited. 

UART Diagnostic Module 

The UART diagnostic module provides a means for checking the performance 
of the UART. To utilize this feature the user must first attach the serial output 
and input lines together so that data output from the UART may be read by the 
same device. The serial diagnostic subroutine is initiated by using the "go 
execute" function. Execution starts at 032D,«. 

Once started, the diagnostic module (UATST) begins by sending data to the 
UART and waiting for data to become available. The status of the UART is 
checked to verify that no fault conditions are present. In the event that a fault is 
detected, the status of the UART is displayed on the two low-order digits of the 
address display. (See table 6.2 for error codes.) If there are no errors, the data is 
read and displayed on the two-digit-data display. A comparison is made between 
the input and output data. If the 2 bytes are equal, the output character is incre¬ 
mented and another byte is sent to the UART to continue the sequence. This pro¬ 
cedure continues until the "RESET" button is pressed, or until an error is 
detected. In the event that the input character does not equal the output charac¬ 
ter, a 0F,« is displayed in the two lower digits of the address display and the 
diagnostic is halted. Figure 6.1 details the logic flow of this software routine. 

Displayed Code 

12,6 or 13,6 

0A,6 or OB,6 
06,6 or 07,6 

00 
OF,* 

Error 

Parity Error 
Framing Error 
Overrun Error 
Transmitter Buffer Not Empty 
Input Character ^ Output Character 

Table 6.2 UART error codes. 
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Figure 6.1 A flowchart of the UART diagnostic module (UATST). 

Serial Input Module 

The serial input module has been included so the user can read serial data from 
external devices. To utilize this capability, the user must set aside a program¬ 
mable memory buffer where the input data is to be stored, and designate the 
number of input characters expected. The input buffer address is stored at address 
07F9i6 in memory (see Appendix D), and the number of characters is stored at ad¬ 
dress 07FD,«. The communication reception begins when the TTYINP module is 
called. 

Seria i Input Initiation Example 

TTYINP EQU 035F.6 Address of input module 
BUFFER EQU 07F9i« Input buffer address 
NCHAR EQU 80 Number of characters to be received 
TTYIBU EQU 07F9i6 Operating system address constant 
TTYIC EQU 07FDi4 Operating system address constant 

LD HL, BUFFER 
LD (TTYIBU), HL 

Set buffer for operating system 
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LD A, NCHAR 
LD (TTYIC), A 
CALL TTYINP 

Set character count for operating system 

Call UART serial input routine 

The data read by the serial input module will be stored in the user-specified 
buffer until the input sequence is terminated. When this occurs, control is re¬ 
turned to the user's program at the next instruction. Termination of the input pro¬ 
cess may be due to any of the following conditions: 

• A status error is detected 
• The number of characters read equals preset count 
• The receipt of a carriage return as an input 

character (ASCII 0D16) 

In the event that a status error is detected, the A register will be equal to 80,4 
when control is returned to the user. If termination results from filling the charac¬ 
ter buffer correctly, the A register will be equal to 00,4. However, if termination is 
the result of a carriage return, the A register will be equal to the number of char¬ 

acters remaining to be input. Figure 6.2 details the logic flow of the TTYINP soft- 
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Serial Output Module 

The serial output module is provided to assist the user in communicating serial 

output data to external devices. To use this module, the operator designates an 
output data buffer address and the the number of characters (bytes) to be trans¬ 
mitted. The output buffer address must be stored at 07FB,6 in memory (sec Ap¬ 
pendix D) and the number of characters to be sent is stored at address 07FE16. 
Data transmission starts when TTYOUT is called. 

Serial Output Initiation Example 

TTYOUT EQU 039E,6 
BUFFER EQU 07FB,6 
NCHAR EQU 35 
TTYOBF EQU 07FB,6 
TTYOC EQU 07FE,6 

LD HL, BUFFER 
LD (TTYOBF), HL 
LD A, NCHAR 

CALL TTYOUT 

Address of output module 
Output buffer address 
Number of characters to be transmitted 
Operating system address constant 
Operating system address constant 
Set buffer address for operating system 

Set character count for operating system 
Call UART serial output routine 

Control will be returned to the user when 

• The output buffer is empty 
• The transmit buffer does not become available, 

indicating an error 

In the event that a normal termination occurs, the A register will be equal to 
00,6 when control is returned to the user. However, if a premature termination 
and return are required, the A register will be equal to 01,6. Figure 6.3 details the 
logic flow of the serial output software module. 
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II. Operating System Module Description 

II.l Warm Start Module 

The warm start module (WARMl) is responsible for saving all Z80 registers in 
the register save area allocated in the reserved portion of programmable memory 
(see Appendix D). Upon entry, the user's A, H, and L registers are saved to pro¬ 
vide working registers for the remainder of the module operation. Next, the user's 
PC is removed from the stack and is saved in the memory locations reserved for 
it. 

The AF register pair is pushed onto the stack and popped off into the HL regis¬ 
ter pair. This procedure enables the flag register to be saved in the register save 
area. The remainder of the user's working and alternate registers are examined 
and transferred to the register save area. Upon completion of this task, the 
module exits to the command recognition module. (See Appendix D for addi¬ 
tional details.) Figure 6.4 details the logic flow of the warm start module. 

Figure 6.4 A flowchart of the warm start module (WARMl). 
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II.2 Command Recognition Module 

The command recognition module (WARM2) is entered after the completion of 
a cold or warm start sequence. When initiated, the module clears the keyboard 

input buffer and the keyboard flags. This removes ambiguity for future opera¬ 
tions. The module will set the data display to FF and the address display to FFFF. 
When completed, the module enters the KEYIN subroutine to get an input charac¬ 
ter from the keyboard. Any input character is checked to see if it corresponds to 
one of the three allowable functions. If so, control is transferred to the proper 
function; otherwise, the input is ignored and the module waits for the next input 
from the keyboard. (See Appendix D for additional details.) Figure 6.5 illustrates 
the logic flow of the command recognition module. 

Figure 6.5 A flowchart of the command recognition module (WARM2). 
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11.3 Restart Module 

The restart module (RESTRT) takes the values stored in the programmable 
memory register save area. It then restores the user's 8- and 16-bit registers before 
returning control to the location specified in the PC save area. This procedure 
restores the alternate registers, and then the working registers. In either instance, 
the flag registers are restored by pushing the data onto the stack and then popping 
if off to the F register. In order to exit to the user's restart address, the saved PC is 
pushed onto the stack and a "RET" (return instruction) is executed. (See Appen¬ 
dix D for additional details.) Figure 6.6 details the logic flow of the restart 
module. 

Figure 6.6 A flowchart of the restart module (RESTRT). 
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II.4 Keyboard Input Module 

The keyboard input module (KEYIN) provides the primary interface between 
the computer and the user. Upon entry, it begins to read data from the keyboard 
input port. It stays in a loop, checking the MSB (most significant bit) of the data. 

The MSB is the key-pressed strobe. When it goes to a logic one level, the seven 
LSBs (least significant bits) of the keyboard input port are retained as the desired 
input character. The module then returns to the user's program with the key¬ 
board character in the accumulator. (See Appendix D for additional details.) 
Figure 6.7 details the logic flow of the keyboard input module. 

Figure 6.7 A flowchart of the keyboard input module (KEYIN). 
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II.5 One Character Input Module 

The function of this module (ONECAR) is to input one or more characters 
from the keyboard. This module also indicates the last character and whether it 
was accompanied by a "NEXT" or "EXEC" key. 

Upon entry, the input buffer and keyboard flags are cleared. (The data display 
may or may not be cleared depending on the requirements of the calling module.) 
The module waits for an input character to be passed to it. When it receives a 
character, it checks to see if it is a 'NEXT" "EXEC", or valid data. In the event 
that the input is a "NEXT" or "EXEC", the appropriate keyboard flag is set along 
with the no data flag and control returned to the user (see figure 6.8). 

If an invalid data character is received, the module is reinitiated. Upon receipt 
of valid data, the data is stored in a 1-byte input buffer, and the module waits for 
the next input character. This character is processed in a manner similar to the 
one just described with the following exception: in the event that the input char¬ 
acter is a "NEXT" or "EXEC", only the appropriate flag is set before returning 
control to the user. (See Appendix D for additional details.) Figure 6.9 shows the 
logic flow of the one character input module. 

BIT 7 6 5 4 3 2 1 0 

□ 0 E | N 

NEXT FLAG 

EXEC FLAG 

NO DATA FLAG 

Figure 6.8 The configuration of the keyboard flags. 
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11.6 Two Character Input Module 

The function of this module (TWOCAR) is to input one or more characters 
from the keyboard and transfer to the user the last two characters when a 
"NEXT" or "EXEC" key is pressed. The module also notifies the user of the type 
of termination that took place. 

Upon entry, the input buffer and keyboard flags are cleared. (The data display 
may or may not be cleared depending on the requirements of the calling module.) 
This module calls the keyboard input module to obtain its input data. The first 
character is checked to determine if it is a "NEXT" or "EXEC"; the appropriate 
keyboard flag is set along with the no data flag, and control is returned to the user 
(see figure 6.8). If an invalid character is received, the module is reinitiated. 
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The receipt of valid data will cause the module to format the data as a two-digit 
value in the keyboard input buffer. It then returns to the user with the ap¬ 
propriate flags set. (See Appendix D for additional details.) Figure 6.10 details the 
logic flow of the two character input module. 

Figure 6.10 A flowchart of the two character input module (TWOCAR). 

11.7 Four Character Input Module 

The function of this module (FORCAR) is to input one or more characters from 
the keyboard and to transfer to the user the last four characters when a "NEXT" 
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or "EXEC" key is pressed. In the event that less than four characters are input, the 
higher order digits will be set to zero. The module also notifies the user via the 
keyboard flags (see figure 6.8). 

The operation of this module is very similar to the two character input module. 
The main difference lies in the manner in which the new data (input from the key¬ 
board) is merged into previous input data from the keyboard. (See Appendix D 
for additional details.) Figure 6.11 shows the logic flow of the four character in¬ 
put module. 
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II.8 Memory Display and Replace Module 

The memory display and replace function is one of the three major modules of 
the operating system. Upon entry (see command recognition module), this 
module (MEMORY) makes a call to FORCAR (four character input module) to 
get the base memory address at which to begin displaying the memory contents. 
When it returns from FORCAR, the keyboard flags are examined to determine if 
the "EXEC" flag is set ( = 1). In the event that the "EXEC" flag is set, control is 
transferred to the restart module (RESTRT). If the "EXEC" flag is not set (=0), 
the address location and memory contents are output to the appropriate displays. 
The TWOCAR (two character input module) is called to obtain new data from 
the displayed memory location. 

Figure 6.12 A flowchart of the memory display and replace module (MEMORY). 
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When control is returned from TWOCAR, the module checks the "no data" 
flag in the keyboard flag word. If this flag is set ( = 1), the "EXEC" flag is exam¬ 
ined. If that is set, control is transferred to the command recognition module 

(WARM2). If, on the other hand, the "EXEC" flag is reset (=0), the user's 
memory address is incremented, displayed on the address display, and its con¬ 
tents are displayed on the data display. 

If, on return from TWOCAR, the "no data" flag is reset (=0), the new data is 
extracted from the keyboard input buffer and stored in the displayed memory 
location. At this time, the module determines if TWOCAR was exited via an 
"EXEC" or "NEXT" directive. In the event that the "EXEC" flag is set ( = 1), con¬ 
trol is transferred to the command recognition module (WARM2). If, however, 
the flag is reset (— 0), the user's memory address is incremented, displayed on the 
address display, and its contents are displayed on the data display. Then the two 
character input module is called to get the next directive for the memory display 
and replace module. (See Appendix D for additional details.) Figure 6.12 shows 
the logic flow of the memory display and replace module. 

II.9 Register Display and Replace Module 

The register display and replace module (REGIST) is one of the three major 
modules of the operating system. This module calls the ONECAR (one character 
input module) to get the initial register display code from the user (see table 6.1). 
Upon return from ONECAR, the "EXEC" flag is checked. If this flag is set (=*1), 
control is transferred to the command recognition module (WARM2). If the 
"EXEC" flag is reset (=*0), the base register display index is calculated from the 
user's register display code. 

At this time, the register index is checked to see if the register request is an 8- or 
16-bit register. If the user requests a 16-bit register, the appropriate register code 
is displayed in the data display, and the requested register data is obtained from 
the register save area and displayed in the address display. The module then 
makes a call to the FORCAR (four character input module) to get new data for 
the register. Upon return, the "no data" flag is checked. If this flag is set and the 
"EXEC" flag is set, control is transferred to the RESTRT (restart module). If the 
"no data" and "NEXT" flags are set, the register display index is incremented and 
displayed in the data display. The new register data is obtained from the register 
save area and displayed on the address display. 

If an 8-bit register has been requested, the register code (see table 6.1) is dis¬ 
played in the data display, and the appropriate data is obtained from the register 
save area and displayed on the address display. At this time, the module calls 
TWOCAR to get new data from the displayed register. When the two character 
input module returns control, the module determines the mode of execution by 
examining the keyboard flags. If the "no data" and "EXEC" flags are set, control 
is transferred to the command recognition module (WARM2). If the "no data" 
and "NEXT" flags are set, the register index is incremented and the register con¬ 
tents channeled to the appropriate display. 

If the "no data" flag is reset, the new register data is obtained from the key¬ 
board input buffer and stored in the appropriate register save location. At this 
time the "EXEC" flag is checked and, if set, control is transferred to the command 
recognition module (WARM2). If the "EXEC" flag is reset, the register data is dis¬ 
played and the user directive processed. (See Appendix D for additional details.) 
Figure 6.13 details the logic flow of the register display and replace module. 
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Figure 6.13 A flowchart of the register display and replace module (REGIST). 
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11.10 Go Execute Module 

The go execute module (GOREQ) is the last of the three major functions of the 
operating system. Upon entry (see command recognition module), this module 
calls FORCAR to get the address where execution is to begin. Upon return from 
FORCAR, the "no data" flag is examined to determine the mode of execution. If 
this flag is set ( = 1), control is immediately transferred to RESTRT. This restores 
the Z80 registers and resumes execution at the PC address currently contained 
from the keyboard input buffer and stored in the PC save location in the register 
save area. Control is then transferred to the command recognition module 
(WARM2) which will restore the registers with the saved data, and begin execu¬ 
tion of the user's program at the specified address. (See Appendix D for addi¬ 
tional details.) Figure 6.14 details the logic flow of the go execute module. 

Figure 6.14 A flowchart of the go execute module (GOREQ). 
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CHAPTER 7 
PROGRAMMING AN 
EPROM 

The ZAP computer has been designed to be inexpensive, reliable, and easy to con¬ 
struct. To keep costs and complexity to a minimum, some computer features that could 

be helpful to a beginner have been eliminated. The most visible of the missing features 
are a front panel and display. While this in no way detracts from the operation of the 
computer, its inclusion would make initial checkout and program development easier. 

To properly test ZAP, a program must be in memory. This program does not have 
to be very long—only a few instructions are necessary to determine whether the com¬ 
puter runs at all. The problem arises when the user wishes to run a program of 50 or 
100 bytes in length. We end up with a "catch-22" situation. To effectively enter ma¬ 
chine code into ZAP's programmable memory, a program that coordinates this activity 
must be running in EPROM. Such a program is called a monitor and is outlined in 
Chapter 6. The catch is that writing the monitor software into an EPROM automatical¬ 
ly requires the monitor to be running the programmer. Fortunately, if one has an alter¬ 
nate way of writing the 1 K ZAP monitor into EPROM, this is no longer a problem. 

Rather than leaving the experimenter to his own devices, this section includes infor¬ 
mation on programming EPROMs. To solve the startup situation. I've outlined a de¬ 
sign for a couple of manual EPROM programmers. Loading programs on a manual 
programmer is tedious. They are primarily intended for much shorter routines such as 
checking basic system operations. However, one manual unit can be modified to load 
the full 1 K monitor software. When ZAP is fully operational, you can use it in con¬ 
junction with an automatic programmer. This will help in writing a number of 
EPROMs. In the event that you do not wish to write your own EPROM, consult Ap¬ 
pendix A for the availability of preprogrammed EPROMs. 

A Quick Review of EPROMs 

It is often desirable to have the non-volatility of ROMs but the read/write capa¬ 

bilities of semiconductor programmable memories. An effective compromise is the 
EPROM. This is a read-mostly memory. It is used as a ROM for extended periods of 
time, occasionally erased and reprogrammed as necessary. Erasure is accomplished by 
exposing the chip substrate, covered by a transparent quartz window, to ultraviolet 
light. We'll cover erasure at the end of this chapter. 

The EPROM memory element used by Intel and most other manufacturers is a stored 
charge type called a FAMOS transistor (Floating-gate Avalanche injection Metal Oxide 
Semiconductor) storage device. By selectively applying a 25 V charging voltage to ad¬ 
dressed cells, particular bit patterns that constitute the program can be written into the 
EPROM. This charge, because it is surrounded by insulating material, can last for 
years. Exposure to intense ultraviolet light drains the charge and results in the erasure 
of all programmed information. 

There are many EPROMs on the market—2708s, 2716s, and 2732s are the major 
ones. For the most part, computerists have moved away from the very difficult-to- 
program 1702s and have opted for the more easily programmed 2708s and 2716s. An 
added benefit is their greater storage density. The newer EPROMs on the market are 

considerably more expensive than the 2708. All things considered, the 2708 is the best 
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buy for the money. At slightly greater expense, you could use the 2758 for a single sup¬ 
ply operation. For these reasons, the EPROM programmer outlined in this chapter is 

the 2708. 
Figure 7.1 is the circuit for a manual 2708 programmer. IC 5 and two sections of IC 3 

provide the +25 V program pulse to the EPROM. IC 5 is set for a duration of 1 ms and 
is triggered by a logic 0 to 1 transition at its input. The EPROM both sources and sinks 
current through programming pin 18. A combination of devices rather than a simple 
open-collector driver is necessary. In the write mode, when CS/WE pin 20 is at 
+ 12 V and between programming pulses, pin 18 has to be pulled down by an active 
device because it sources a small amount of current. The programming pulse itself is 
about 30 mA and cannot easily be accommodated without emitter-follower configured 
Ql. This pulse should be between 25 and 27 V at pin 18. Three 9 V batteries will suf¬ 
fice. (An alternative is to use a commercial encapsulated 24 V, 50 mA puwer supply. 
The encapsulated supply can be resistor trimmed to produce the desired 25 to 27 V.) 

To write a byte into the EPROM, a 10-bit address designating which of the 1024 

bytes will receive the data is preset on switches SW 1 thru SW 10. To start at location 
0, all switches will be in the closed position. Next, the 8 bits that are to be stored are set 
on switches SW 12 thru SW 19. This data byte should be reflected on the output dis¬ 
play LED 1 thru LED 8. Finally, to get the programmer in the write mode, switch 

SW 11 is set open. Actual insertion of the data occurs when the write pulse pushbutton 
PB 1 is pressed. This fires a 1 ms pulse of 25 V into the 2708 program pin. According to 

manufacturer's specifications, no single programming pulse should be longer than 
1 ms. For maximum data retention, 100 of these programming pulses are recommended 
(totalling 100 ms per byte). 

Unfortunately, 100 ms cannot be applied to a single address all at once. Manufac¬ 

turers specify that it should be done sequentially and should consist of 100 1-ms ap¬ 
plications. In short, it means that for a 25-byte program, each address should be writ¬ 
ten with one pulse and then the loop repeated up to 100 times. I have never tried to 

lengthen the pulse and program a 2708 faster than called for. Experience has shown, 
however, that some EPROMs are completely written with as few as 2 or 3 loops. Ob¬ 
viously, for full retention each address should be rewritten on an automatic program¬ 
mer. 

Reading back the stored contents of a 2708 is easy on the same manual programmer. 
First, all data input switches SW 12 thru SW 19 are opened to the "1" state and then 
"read/write" switch SW 11 is set in the closed or "read" mode. No other pulsing or 
clocking is necessary. The output display will show the contents of the byte pointed to 
by the address input switches SW 1 thru SW 10. It will remain constant until set to 
another address. Reading out the contents is simply a matter of incrementing this 10-bit 
address through the range of program addresses. 

A slightly more complex manual programmer is demonstrated in figure 7.2. Three 
presettable counters are inserted between the address input switches and the EPROM. 
Instead of changing the switch positions for each address, they are now used only to 
preset the counters to some beginning address. If we want to program an EPROM start¬ 
ing at hexadecimal 3AA, the switches would be set to that address and the "address 
preset" switch pressed. The 10 LEDs, LED A0 thru LED A9, would read 3AA as the ad¬ 
dress. The data to be programmed is set on SW 12 thru SW 19. Pressing the "write 

data" push button PBl (the renamed "address increment") stores the data from the 
switches. Successive memory locations are programmed by setting SW 12 thru SW 19 
and pressing PBl. Resetting the address counter to zero is accomplished by pressing the 

clear button. 
It is easy to see how this manual programmer, while not greatly improving program¬ 

ming time, facilitates reading memory. Put all the data input switches to the logic 1 
level, set the interface to the read mode, and preset and load a start address. Readout is 
accomplished simply by repeated operation of the address increment button. 

An Automatic Programmer 

You will need an operational ZAP computer to build an automatic programmer. The 
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way. 
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complexity of design can be reduced considerably by taking advantage of decoded, but 
to this point unused, I/O strobes provided in the basic ZAP. The circuit shown in 
figure 7.3 takes three less chips than the manual programmer in figure 7.2. Its opera¬ 
tions, while similar in operation, are quite different in detail. 

Four I/O strobes (input and output port 1, and input and output port 4) synchronize 
the hardware and software. Figure 7.4 shows the logic flow for writing an EPROM. 
With the EPROM connected directly to the data bus, only the strobes, rather than full- 
latched registers, are necessary for this interface. 

To write data, the sequence should be as follows: first, an OUT 04 pulses the address 
counter clear lines, setting them to 0. Next, the EPROM is set to the program mode, 
and the first byte is written into the EPROM with an OUT 01 instruction. 

Figure 7.5 shows how the 2708 program mode is selected. The significance of this cir¬ 
cuit is that its output is wired as a 2-bit digital-to-analog converter to control the chip- 
select line of the 2708. _ 

When an OUT 04 is executed, the CS pin will see 0 volts enabling the read mode. 
When an OUT 01 Js executed, this voltage will be 12 V for program mode. When no 

strobe is present, CS will be at +5 V and the 2708 will be three-state. 
An OUT 01 fires the 25 V program pulse for 1 ms while the pertinent data is on the 

data bus. After that, an INP 01 is executed, which increments the address counter to 
the next address position. We are not actually doing any input function, but instead we 
are using the decoded strobe of the INP 01 instruction to mean "increment address reg¬ 
ister." 

The hardware automatically keeps track of the address, but the software must imple¬ 
ment its own counters to keep track of the 0 to 1023 positions as well as the number of 
times the complete 1024 bytes have been programmed. Remember, the manufacturer 
suggests 100 1-ms loops. 

Reading the EPROM automatically is also very simple. A flow diagram of the logic is 
shown in figure 7.6. The address counter is cleared again by doing an OUT 04. Data is 
read by executing an INP 04. This data can be stored and analyzed. Finally, the address 
counter is incremented again with an INP 01, and the process is repeated to read the 
next byte. 

While discussion has centered on the Intel 2708 EPROM as the most cost-effective 
choice, there are many other EPROMs on the market. Two devices of particular impor¬ 
tance (should their price and availability improve by the time you read this) are the 
Intel 2758 and 2716. These are 1 K and 2 K single supply (+5 V) EPROMs, respective¬ 
ly. The significance for the experimenter is that these parts can be programmed with a 
single, 50 ms, 25 V program pulse to each address rather than successive 1-ms loops. 
The three programmer circuits presented are set up for 2708s but can be easily recon¬ 
figured for these other devices. Changing the one-shot timing pulse from 1 ms to 50 ms 
and rewiring a few pins will allow complete programming with just a single run 
through the addresses (they don't have to be successively programmed, either). 

Erasing An EPROM 

EPROMs bought directly from a manufacturer come completely erased. If you plan 
on writing an EPROM program once, and you either don't want to modify it or you 
don't make mistakes, forget about erasing. The majority of computerists will want to 
reprogram EPROMs. It then becomes necessary to know how to erase them. We all 
know that EPROMs are ultraviolet erasable. However, duration, distance from the 
light source, and intensity determine the quality of the erasure. 

People concerned about maintaining a manufacturer's specifications during the pro¬ 
gramming sequence should also be advised of the proper erasing methods. Unlike the 
test read-after-write-loop method for programming, EPROMs are usually removed 
from the circuit during erasing. Therefore, it is advisable to perform the procedure cor¬ 
rectly, or it will have to be repeated. 

The typical 2708 EPROM can be erased by exposure to high intensity shortwave 
ultraviolet light, with a wave length of 2537 A. The recommended integrated dose (UV 
intensity X exposure time) is 12.5 watt-seconds per square centimeter (Ws/cmJ). The 
time required to produce this exposure is a function of the ultraviolet light intensity. 
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Cost and safety, equally emphasized, should be the guiding factors when selecting an 
ultraviolet eraser. A commercial unit not only specifies its intensity (that allows com¬ 
putation of exposure time), but also includes important interlocks. It is conceivable 

that some homebrew erasers might have improper shielding that could allow the ultra¬ 
violet light to escape or be accidentally turned on while being viewed. Such possibilities 
can lead to permanent eye damage. 

One of the more cost-effective erasers on the market is the UVS-llE by Ultra-Violet 
Products, Inc, San Gabriel CA, 91776. This unit is made especially for the home com¬ 
puter market and includes some important safety features. The lamp will not operate 
unless properly seated, and if lifted from its holding tray, it will automatically shut off. 
At the standard exposure distance of 1 inch, the UVS-llE produces an intensity of 
5,000 /iW per square centimeter (/xW/cm2). Exposure time for the 2708 is easily calcu¬ 

lated. 

Exposure time (T£) 

T*-J+I 

Where 

J = required erasure density of device 
I = incident power density of eraser 

For a 2708 which requires 12.5 Ws/cm2 

I - 5000 /xW/cm2 
I - 12.5 Ws/cm2 

or Tc 

12JL 
5000X10 

41.6 minutes 

=* 2500 seconds 

for complete erasure 
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Figure 7.3 A schematic diagram of an automatic 2708 programmer. 
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Figure 7.4 A flowchart of an automatic EPROM programmer write cycle. 

Figure 7.5 Programmable control of an EPROM CS line in an automatic EPROM programmer. 
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Figure 7.6 A flowchart of an automatic EPROM programmer read cycle. 
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CHAPTER 8 
CONNECTING ZAP TO 
THE REAL WORLD 

It's now obvious that the ZAP computer can be configured in a number of ways. 
Depending on your needs, you can go far beyond the basic system I have outlined. If 
you want a personal computer that is the equivalent of large commercial microcomput¬ 
er systems, then you must add considerably more memory and peripherals. Accom¬ 
modations must be made for a more powerful operating system and most probably a 
high-level language such as BASIC or Pascal. If you intend to use the ZAP computer as 
a word processing system, then a video display and printer will be required. This, in 
turn, necessitates adding more parallel and serial ports. Whatever the eventual config¬ 
uration, the design considerations that went into constructing the ZAP computer do 
not change. 

The ZAP computer is intended as a trainer. This book is structured in such a way 
that you should be able to lay out a system configuration and build it. I have not 
discussed what it takes to design a word processing system, or to add floppy disk stor¬ 
age, because it is beyond the scope of this introductory text. The support material 
necessary to adequately cover such an undertaking would be enough for another book. 
This does not mean, however, that everything is finished once the ZAP computer is 
constructed and you learn how to write and execute a short program. Quite the con¬ 
trary; a more significant application of ZAP is to connect it to something considered 
part of the "real world" and have it perform some constructive task. ZAP's "power to 
weight" ratio makes it a natural for intelligent control applications. The real key to us¬ 
ing ZAP effectively is learning how to connect it to the real world. 

Within the framework of the direct examples I have outlined, the ZAP computer 
created from this book should be a single-board computer suitable for use in a variety 
of applications. Because it includes a serial port, two parallel ports, PROM monitor, 
and programmable memory, ZAP is in many respects equivalent to commercial digital 
controllers costing hundreds of dollars more. 

Small single-board computers are most often used in data acquisition and intelligent 
control applications. Their function is usually to digest certain input parameters and 
compute a result. For example, in a 100 HP electric motor control, the inputs would be 
voltage, current and RPM, and the control output would be a load factor correction 
voltage. 

In all probability, a few of these "intelligent controllers" were used by the press that 
printed this book. A likely place is the electronic control unit that monitors print densi¬ 
ty and automatically adjusts ink flow. The computer "reads" the print and decides 
whether to increase or decrease the ink flow to the paper. This decision must take into 
account various input parameters such as humidity, temperature, paper velocity, and 
specific gravity of the ink. The control algorithm written in machine code and stored in 
ROM shifts through all the input data and generates its conclusion in the form of a pro¬ 
portional output to an ink-flow valve. 

In most cases, computerized functions do not stop with simple control. In any pro¬ 
cess where repeatability and quality control are important, significant process param¬ 
eters are constantly monitored for deviation from preset limits and an alarm is set if the 
limits are exceeded. To aid in long-term analysis, the data acquisition function often in¬ 
cludes recording raw-process data from the input sensors at specific intervals and gen- 
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erating a permanent log. 

THE REAL WORLD 
I don't want to confuse you by discussing too many commercial applications of sin¬ 

gle-board controllers. I doubt there are many web presses hidden in closets to which 
you want to add computer control. There are, however, many equally challenging and 
less esoteric applications for computer controls around the home. For example, a few 
that come to mind include energy management, security, and environmental monitor¬ 
ing. I refer to such systems as real world systems, as opposed to the TTL digital world 
of computers. 

Because real world is anything outside of the computer, it is generally an analog en¬ 
vironment. The metamorphosis of ZAP into an intelligent controller is dependent 
primarily upon effective analog interfacing. For this reason, the rest of this chapter is 
dedicated to the design and construction of an economical analog I/O interface. 

But first let's review the basics of D/A (digital-to-analog) conversion and then 
discuss a method to use a D/A to perform A/D (analog-to-digital) conversion. In data 
acquisition systems, there is often a need to acquire high resolution multiple channels, 
and AC as well as DC inputs. This being the case, I will also discuss a circuit which, in 
effect, allows ZAP to function as an 8-channel digital voltmeter. Finally, because the 
temporal relationship of so many events is significant, ZAP will be configured with a 
real-time clock that defines the time at which control operations occur. 

DIGITAL-TO-ANALOG CONVERTERS 
The D/A (digital-to-analog) converter can be thought of as a digitally controlled 

programmable potentiometer that produces an analog output. This output value (VOUT) 
is the product of a digital signal (D) and an analog reference (Vm) and is expressed by 
the following equation: 

Vowr “ D Vref 

To a large extent, no D/A or A/D converter is very useful without specifying the 
type of code used to represent digital magnitude. Converters work with either unipolar 
or bipolar digital codes. Unipolar includes straight binary and binary coded decimal 
(BCD). Offset binary, one's or two's complement and Gray code, is usually reserved 
for bipolar operation. However, we will limit our discussion to straight and offset 
binary. 

It is important to remember that the binary quantity presented by the computer is a 
representation of a fractional value to be multiplied by a reference voltage. In binary 
fractions, the MSB (most significant bit) has a value of 1/2 or 2*\ the next MSB is 1/4 
or 2'1, and LSB (least significant bit) is 1/2* or 2"" (where n is the number of binary 
places to the right of the binary point). Adding up all the bits produces a value that ap¬ 
proaches 1. (The more bits, the closer that value is to 1.) The algebraic difference be¬ 
tween the binary value that approaches 1, and 1, is the quantization error of the digital 
system (to be discussed later). 

Offset binary is similar to straight binary except that the binary number 0 is set to 
represent the maximum negative analog quantity; the MSB is a 0 for negative analog 
values, and a 1 for positive analog values. 

The conversion of digital values to proportional analog values is accomplished by 
either of two basic conversion techniques: the weighted-resistor D/A converter and the 
R-2R D/A converter. The weighted-resistor D/A converter is by far the simplest and 
most straightforward. This parallel decoder requires only one resistor per bit and 
works as follows: switches are driven directly from the signals that represent the digital 
number D; currents with magnitudes of 1/2, 1/4, 1/8, . . . 1/(2") are generated by 
resistors with magnitudes of R, 2R, 4R, . . . 2"R, that are connected by means of 
switches between a reference voltage, —V*rf, and the summing point of an operational 
amplifier. The various currents are summed and converted to a voltage by an opera¬ 
tional amplifier (see figure 8.1). 

While this may appear to be a simple answer to an otherwise complex problem, this 
method has some potentially hazardous ramifications. The accuracy of this converter 
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is a function of the combined accuracies of the resistors, switches (all switches have 
some resistance), and the output amplifier. In conversion systems of greater than 
10-bits resolution, the magnitudes of the resistors become exceptionally large and the 
resultant current flow is reduced to such a low value as to be lost in circuit thermal 
noise. 

A reasonable alternative to the weighted-resistor D/A converter is the R-2R con¬ 
verter. This is often referred to as a resistor-ladder D/A converter and is the most wide¬ 
ly used type even though it uses more components. This circuit (see figure 8.2) also 
contains a reference voltage, a set of binary switches, and an output amplifier. The 
basis of this converter is a ladder network constructed with two resistor values, R and 
2R. 

One resistor (2R) is in series with the bit switch, while the other (R) is in the summing 
line, so that the combination forms a "pi" network. This suggests that the impedances 
of the three branches of any node are equal, and that a current I, flowing into a node 
through one branch flows out as 1/2 through the other two branches. In other words, a 
current produced by closing a bit switch is cut by half as it passes through each node on 
the way to the end of the ladder. Simply stated, the position of a switch, with respect to 
the point where the current is measured, determines the binary significance of the par¬ 
ticular switch closure. 

Figure 8.1 A 4-bit weighted-resistor digital-to-analog converter. A 4-bit word is used to control four 
single-pole single-throw switches. Each of these switches is in series with a resistor. The resistor 
values are related as povjers of 2, as shown. The other sides of the switches are connected together at 
the summing point of an operational amplifier. Currents with magnitudes inversely proportional to the 
resistors are generated when the switches are closed. They are summed by the op amp and converted 
to a corresponding voltage. 

v Rtr 

V OUT 

Figure 8.2 A 4-bit R-2R resistor-ladder digital-to-analog converter. This type of D/A converter makes 
use of a resistor-ladder network constructed with resistors of value R and 2R. The topology of this net* 
work is such that the current flowing into any branch of a 3-branch node will divide itself equally 
through the two remaining branches. Because of this, the current will divide itself in half as it passes 
through each node on its way to the end of the ladder. The four switches are again related as powers of 
2. The position of each switch with respect to its distance from the end of the ladder determines its 
binary significance. 
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This type of converter is easy to manufacture because only two resistor values are 
needed; in fact, one value, R, will suffice if three components are used for each bit. 
Keeping matched resistor values with the same temperature coefficients contributes to 
a very stable design. Certain trade-offs are required between ladder resistance values 
and current flow to balance accuracy and noise. 

One form of the R-2R ladder circuit is the multiplying D/A converter and is avail¬ 

able with either a fixed or an externally variable reference. Multiplying D/A converters 
that utilize external variable analog references produces outputs that are directly pro¬ 
portional to the product of the digital input multiplied by this variable reference. These 
devices have either current or voltage output. The current output devices are much 
faster because they do not have output amplifiers that limit the bandwidth; therefore, 
they tend to cost less than voltage types. 

An economical 8-bit multiplying D/A is the Motorola MC1408-8 (see figure 8.3). As 
previously mentioned, this monolithic converter contains an R-2R ladder network and 
current switching logic. Each binary bit controls a switch that regulates the current 
flowing through the ladder. If an 8-bit digital input of 11000000 (192 decimal) is applied 
to the control lines of the illustrated converter, the output current would be equal to 
(192/256)(2 mA) or 1.50 mA. Note that when binary 11111111 (255 decimal) is ap¬ 
plied, there is always a remainder current that is equal to the LSB. This current is 
shunted to ground, and the maximum output current is 255/256 of the reference 
amplifier current, or 1.992 mA for a 2.0 mA reference current. The relative accuracy 
for the MC1408-8 version is ±1/2 the LSB, or 0.19% of full scale (see figure 8.4). This 
is more than adequate for most home computer analog control applications. 

The final circuit (figure 8.5) is an 8-bit MC1408-8 multiplying D/A converter. As 
previously outlined, "multiplying" means that it uses an external variable reference 
voltage. In this case, a 6.8 V zener-diode regulated voltage is passed through a resistor 
that sets the current flowing into pin 14 to approximately 2 mA. 

VCC(+5V) 

I OUT • A [ Dl/2 ♦ 02/4 *03/8+ 04/16 *03/32+06/64 + 07/128 ♦08/256] 

WHERE A S V REF/R14 
AND ON * 1 FOR HIGH LOGIC LEVEL 

0N«0 FOR LOW LOGIC LEVEL 

Figure 8.3 A typical 8-bit current-output monolithic multiplying D/A converter. This Motorola in¬ 
tegrated circuit contains an R-2R network like the one in figure 82. plus additional current-switching 
logic. 
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Figure 8.5 A final 8-bit MCI408-8 multiplying digital-to-analog converter with span and offset adjust¬ 
ments. 
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An additional resistor, Rl (also in this current leg), allows the current to be varied by 
a small percentage and provides the ability to adjust the full-scale range of the D/A 
converter. The output is a current that is equivalent to the product of this reference cur¬ 
rent and the binary data on the control lines. The current is converted to a voltage 
through IC 9 and can be zero offset through the use of the offset adjustment pot, R2. 

Using this circuit with the ZAP computer is simply a matter of connecting the input 
lines of IC 1 to a convenient parallel output port on ZAP. Any 8-bit value sent to that 
port will be converted to a voltage proportioned to that output. 

The digital code presented to the D/A converter must be in offset binary. A binary 
value of 00 hexadecimal produces an output of —5 V while FF hexadecimal is 
equivalent to +5 V. In offset binary, if the MSB is a 0, the output is negative, and if the 
MSB is a 1, the output is positive. Because the converter has a range of 10 V, and is an 
8-bit device, the resolution of the converter is 1/256 of 10 V, or approximately 40 mV. 
This means that the smallest output increments will be in 40 mV steps. To change this 
to finer increments requires a shorter range, such as +2.56 V to —2.56 V. By adjusting 
the span and zero pots, any reasonable range may be chosen, but the resolution will 
always be equal to the LSB or 1/256 of the range, and accuracy is estimated to be 
±1/2 the LSB. 

Calibration is fairly straightforward. Apply the power, and with a short program 
that outputs a value from the accumulator, send a binary 10000000 to the port address 
corresponding to the D/A interface board. Using a meter to monitor the output of the 
LM301A, adjust the zero pot R2 until the output is 0 V. With the same program, load 
in binary 11111111 to the port address and adjust the span pot Rl for a meter reading 
of +5.12 V. A binary setting of 00000000 should produce —5.12 V. If you are unsuc¬ 
cessful at this point, turn the power off and remove the MCI408-8 and the LM301A; 
then reapply power and verify that the binary output is correct on the parallel output 
port. Nine times out of ten, problems like this can be attributed to choosing an incor¬ 
rect output code. 

If the test is successful, you are now ready to generate analog outputs under program 
control. A simple test is to designate a section of memory and sequentially output the 
values to the D/A. If the table is 256 bytes long with the values ranging from 0 to FF 
hexadecimal in 01 increments, the result will be a sawtooth-waveform output. If the 
samples are sent to the output rapidly enough, and it is connected to a speaker, the 
waveform will be audible. The exact frequency will be a function of the update timing 
loop. 

The following is a short program that exercises the D/A in such a manner: 

START EQU 0400 Memory table start HL address 
END EQU 05 Memory table end H address 
OPORT EQU 07 D/A output port number 
SAMP EQU A0 Sample rate time constant 

LD HL, START Load table start address 
AGAIN LD A, (HL) Table value to accumulator 

OUT OPORT, A Output byte to D/A 
CALL DELY Sample time delay 
INC HL 
LD A,H 
CP END Test to see if at end of table 

JP 
HALT 

NZ, AGAIN If not, output the next sample 

DELY LD B, SAMP Sample rate timing loop 
DCR DEC B 

JP NZ, DCR 
RET 

The table can be set to any length. Values in the table can be calculated to produce 
any shape waveform. 
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ANALOG-TO-DIGITAL CONVERTERS 
It's always a good idea to discuss D/A converters first. They are rather straightfor¬ 

ward and there are not an overwhelming number of conversion methods. By introduc¬ 
ing them first, you will become aware of the process of binary conversion and ap¬ 
preciate the concepts of resolution and accuracy. Practically speaking, however, if you 
were going to set up the ZAP computer to serve in a data acquisition mode—say, 
reading and recording temperatures—you would need an A/D (analog-to-digital) con¬ 
verter before a D/A (digital-to-analog). 

An A/D does what its name implies. It converts analog voltages into a digital repre¬ 
sentation compatible with the computer input. As in the case of an 8-bit D/A, an A/D 
is subject to the same conversion rules. If you are trying to read a 10 V signal with an 
8-bit converter, the resolution will be 1/256 of 10 V (or 40 mV) and the accuracy will 
be ±1/2 the LSB. 

For greater resolution more bits are necessary. The number of bits does not set the 
range of a converter; it only determines how finely the value is represented. An 8-bit 
converter (either A/D or D/A) can be set up just as easily to cover a range of 0 to 1 V 
or 0 to 1000 V. Often the same circuitry is used, but a final amplification stage or 
resistor-divider network is changed. Understand, of course, that with a range of 
1000 V and an 8-bit converter, the resolution is 4 V. Such a unit would be useless on 0 
to 10 V signals. The problem can be reconciled in a number of ways, but the easiest 
solution is to use a converter with more bits. A 16-bit converter that has 65,536 (216) 
steps instead of 256 (2s) would cover the same 1000 V range in 15 mV increments. 

For the ZAP computer, the question becomes more one of reasonable price perfor¬ 
mance than nth degree accuracy. 

Analog-to-digital conversion is considerably more expensive than D/A—the price is 
directly related to resolution and accuracy. There are many ways that A/D conversion 
can be accomplished. The range varies from very slow, inexpensive techniques to ultra- 
fast, expensive ones. An A/D converter can cost as little as $5 or as much as $10,000. 
An A/D converter that scans thermistor probes and provides data to control the tem¬ 
perature in a large supermarket may cost $4.75, but it cannot encode video information 
from an optical scanner. 

The objective of this book, of course, is to help you to build your own computer; lit¬ 
tle is served by presenting designs that are beyond a reasonable budget and average 
construction abilities. For those reasons, I have sifted through a multitude of tech¬ 
niques to select four designs that can easily be built and attached through the ZAP 
computer's parallel interface. One of them should meet your basic data acquisition re¬ 
quirements. 

1. Basic analog to pulse width converter 
2. Low cost and low speed 8-bit binary-ramp counter converter 
3. High speed 8-bit successive approximation converter 
4. Eight-channel 3Vi-digit 0 — 200 V AC/DC interface 

PULSE WIDTH AND BINARY COUNTER CONVERTERS 
Analog to Pulse Width Converter 

This converter is one of the most popular open-loop encoders because of its simplici¬ 
ty. A basic block diagram is shown in figure 8.6. This device uses a fixed oscillator in 
combination with a circuit that generates a pulse width that is a linear function of the 
analog input voltage. 

To obtain this variable linear pulse width, designers frequently use a ramp generator 
and a Schmitt-trigger circuit. A gating pulse is started at the beginning of the ramp and 
a counting circuit starts incrementing at a fixed frequency. When the linear ramp 
reaches the same value as the input voltage, the counting is terminated. The value left 
in the register at that point is representative of the analog input. 

Figure 8.7 is a schematic of a unipolar analog to pulse width converter that operates 
on this principle. 1C 1 is configured as a gate controlled linear ramp generator and IC 2 
is the input comparator. The process starts when the 7.5 KHz clock signal fires IC 3 (a 
74121 one-shot), and starts its 35 ms period, which is the gate time. At the beginning of 
this gate period, a pulse that clears the two 7493s and the ramp generator is generated. 
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Figure 8.7 A schematic diagram of a unipolar analog to pulse width converter. 
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This, in turn, enables the clock signal to the counter. The slew rate of the ramp genera¬ 
tor is set to be approximately 10 V per 35 ms. IC 2 continuously compares the input 
and ramp voltages. When they are equal, the clock signal to the counter is stopped and 
the ramp generator is reset. At the conclusion of the 35 ms gate time, whatever value is 
in the counter is transferred to an 8-bit storage register. The value stored in this register 
is an 8-bit number proportional to the input voltage. The entire process starts again on 
the next clock pulse. 

By properly selecting the gate times and the clock rate, you can change the span and 
resolution of the circuit. With a gate time of 35 ms and a clock rate of approximately 
7500 Hz, 256 clock pulses should be counted during the gate time. The ramp timing ad¬ 
justment pot should be set so that the counter reaches maximum count when 2.56 V is 
applied to the input of IC 2. A 10:1 divider attached to this input will allow the same 
8-bit count to represent 25.6 V. 

This circuit is simple, but its accuracy depends on the stability of the individual sec¬ 
tions of the circuit. To use it, connect the register output to a parallel input port. Sim¬ 
ply read the port when you want the latest value. The circuit automatically updates 28 
times a second, hence no reading is older than 35 ms. 

Binary-Ramp Counter Converter 
The above A/D technique is most often used in slow sampling rate, high-accuracy 

measurements. Achieving these results, however, hinges on the use of precision com¬ 
ponents and proper construction. The next most productive approach to consider is the 
binary-ramp counter method. In my opinion, this is the best type if you plan to con¬ 

struct an A/D for ZAP. It uses fewer components and, in practice, is much faster and 
easier to build than linear-ramp circuits. 

Figure 8.8 illustrates the basic block diagram for the binary-ramp counter converter. 
The linear-ramp generator of the previous technique has been replaced by a D/A con¬ 
verter. In this case, the D/A is used to reconvert the digital output of the binary 
counter back to analog for comparison against the analog input. If they are equal, then 
whatever code is presently set on the D/A input is also our A/D output. 

n-bit 

> PARALLEL 

OUTPUT 

RESET 

Figure 8.8 A block diagram of a basic binary-ramp counter A/D converter. 
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The simplest way to operate the system is to start the counter initially at 0 and to 
allow it to count until the D/A equals or exceeds the analog input. The only critical 
consideration in designing this circuit is that the clock rate cannot be faster than the 
response of the comparator and D/A. If it takes 100 ns for these components to do 
their job, then the maximum clock rate should be 10 KHz. For an 8-bit converter 
(counting from 0 to 256 each sample period), the maximum sample rate is 10,000/256 or 
some 39 samples a second. In practice, however, 5 /is is a more reasonable settling time, 
resulting in about 750 samples per second. For still higher speeds, we use a different 
kind of A/D (more on this later). 

Figure 8.9 shows a schematic of a binary-ramp counter converter that uses a 
MC1408-8 multiplying D/A converter chip. The counter output is connected to the 
MC1408-8 to provide a direct analog feedback comparison of the value set on the 
counter. Initially, ICs 4 and 5 are cleared, and the D/A output should equal the 
minimum input voltage. For a 0 to 5.12 V converter, this would be 0 V. For a —2.56 to 
+2.56 V unit, it would be —2.56 V. If the output of IC 1 is less than Vw, the clock 
pulses are allowed to reach the counter. As each pulse increments the counter, the out¬ 
put of the D/A keeps rising until eventually it equals or just exceeds VlN on the com¬ 
parator. When this happens, additional clock pulses are inhibited. At the end of the 
sample period, the count value of ICs 4 and 5 is stored in a separate register. For ZAP 
to read this data, it just requires connecting this register to an input port and reading it 
directly. 
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Using the Computer to Replace the Counter 
Figure 8.9 is a stand-alone circuit. It does not require the computer for operation. 

The A/D updates itself at a preselected sample rate and loads this value into an 8-bit 
latch. As far as the computer is concerned, there is a steady state reading from the con¬ 
verter. Every function required to perform the A/D conversion is constructed from 
hardware components. 

There are certain advantages to this approach. The A/D can be independently as¬ 
sembled and tested without a computer. For example, a voltage can be applied to the 
input and the 8-bit value can be displayed on 8 LEDs. The ability to test each subsystem 
independently is the way I've tried to present all the hardware in this book. If, on the 
other hand, you feel you've mastered the art of programming and would rather not 
build elaborate interfaces, much of the hardware of figure 8.9 can be replaced with 
software subroutines. 

Consider for a moment the major elements of this design. This 8-bit A/D has four 
sections: D/A, analog comparator, 8-bit counter, and timing logic. The resistor ladder 
and analog comparator are necessary components, but the last two sections are prime 
candidates for synthesis through the computer. The combined function of these devices 
is to increment an 8-bit count and check the output of the comparator. 

The ZAP computer has parallel input and output ports. By incrementing a central 

processor register and outputting the value after each increment, the 8 lines from the 
port will have all the appearances of a standard 8-bit counter made with 7493s and so 
on. By using one bit of an input port to read the status of the comparator, we can also 
replace the rest of the timing logic. 

The resulting interface has fewer components and is shown in figure 8.10. The D/A 
remains essentially the same except that rather than being driven from two 4-bit 
counters, it is connected to an 8-bit parallel output port. The analog output of the D/A 
will be whatever value is sent to the output port. Instead of hardwired logic to detect 
when the D/A and input voltage are equal, we attach the comparator output to bit 0 of 
an available input port. 

BITO 
parallel 
INPUT 
PORT 

Figure 8.10 A software-driven 8-bit analog-to-digital converter. 
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The conversion process is not unlike the hardware version. First, we clear a register 
(B, for example) and then output the register value to the port attached to the D/A. 
This will set the D/A to its minimum output. Next, we read the input port that has the 
comparator attached to it and check bit 0 (a logic 1 indicates that the input and D/A 
voltages are equal). If the comparator is low (the voltages are not equal), the register is 
then incremented and the process is repeated. Eventually, the register will be in¬ 
cremented to the point where the D/A output and the unknown input voltage are 
equal. The comparator will then switch. At this point the program is halted and the 
value of the B register is the digital equivalent of the input voltage. The program to ac¬ 
complish this follows: 

AGAIN 

MVI B Clear B register 
OUT 0,B Output B register 
INC B Increment B register 
OUT 0,B Output B register 
IN 04 Read comparator port 
ANA 01 Isolate bit 0 
JNZ AGAIN Continue if voltages not equal 
HLT A/D value is in B register 

The above program should be repeated each time a new reading is needed and the 
sample rate can be adjusted within broad limits. Remember, however, that we still 
have to wait for the D/A circuitry to settle and it should not be incremented any faster 
than 5 /xs. Using the 2.5 MHz Z80 should not present a problem. Using a 4 MHz 
crystal the central processor might necessitate a few NOPs in the loop. 

There are many variations on this circuit. As described, it takes up to 255 iterations 
of the program to find an answer. On a computer with a 2 /xs average instruction time, 
the program could take 3 /xs to finish, limiting us to about 300 samples a second. Add 
the other tasks that the computer must perform and you might be limited to 100 
samples a second. Executing counting routines takes time; it will not, however, be a 
problem if you are merely monitoring a temperature probe that has a 30-second time 
constant. 

If you should want to track and record fast changing signals, such as an acoustic 
waveform, then a much faster conversion algorithm is required. One method that 
speeds up the process is called successive approximation (more later). 

The capabilities of this circuit can be expanded in other ways. An additional CMOS 
multiplexor can be connected to 3 bits of another output port to turn this simple circuit 
into an 8-channel A/D. Also, because this circuit includes a D/A, its output is avail¬ 
able as well. 

Successive Approximation Converters 
More than likely one of the three converters presented thus far will suffice for non- 

critical data acquisition. Slowly changing signals can be handled accurately and effi¬ 
ciently. However, there are occasions when the signal in question is not slow or it car¬ 
ries a particular transient that must be captured. For example, detecting a 100 /xs event 
requires a converter with a capability of 20,000 samples per second. In such cases we 
need a much faster conversion method. 

Figure 8.11 is the schematic of a general purpose high-speed, 8-bit converter. It is 
capable of sample rates in excess of 200,000 samples per second. To attain these speeds, 
a technique called successive approximation is used. Like the binary-ramp counter con¬ 
verter, this A/D also incorporates a D/A in a feedback loop but replaces the counters 
with a special SAR (Successive Approximation Register). The circular logic of suc¬ 
cessive approximation is best explained in the block diagram of figure 8.12. 

Initially the output of the SAR and mutually connected D/A are at a zero level. After 
a start conversion pulse, the SAR enables the bits of the D/A one at a time starting with 
the MSB. As each bit is enabled, the comparator gives an output signifying that the in¬ 
put signal is greater or less in amplitude than the output of the D/A. If the D/A output 
is greater than the input signal, a "0" is set on that particular bit. If it is less than the in¬ 
put signal, it will set that bit to "1". The register successively moves to the next least 
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Figure 8.11 A schematic diagram of an 8 bit successive approximation AID converter. 
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Figure 8.12 A block diagram of a typical 8-bit successive approximation A/D conversion system. 

significant bit (retaining the setting on the previously tested bits) and performs the 
same test. After all the bits of the D/A have been tried, the conversion cycle is com¬ 
plete. As opposed to the 256 clock pulses of the binary counter method, the entire con¬ 
version period takes only 8 clock cycles. Another conversion would commence on the 
next clock cycle when it's in the free-run mode. To retain the 8-bit value between con¬ 
versions, an 8-bit storage register IC 3 has been added. To use this A/D, simply con¬ 
nect the output of this latch to an 8-bit input port. 

The components of the D/A circuit are changed slightly from previous implementa¬ 
tions to increase the speed, and a faster comparator is used. With a clock rate of 
800,000 Hz, the circuit will do 100,000 conversions a second. Because they are auto¬ 
matically loaded into the 8-bit-holding register IC 3, the update is transparent to the 
computer and can be read at any speed. The sample rate is a function of the clock rate. 
If it is unnecessary to have such a high sample rate, it may be reduced by increasing the 
value of Cl. High speed A/D converters are susceptible to layout and component selec¬ 
tion. While 200,000 samples per second is attainable, 20,000 samples per second might 
be more practical. 

A Unique Application for a Fast A/D 
When we first considered adding an A/D to ZAP, our thoughts centered on monitor¬ 

ing some process or turning ZAP into an intelligent controller. In most cases, this re¬ 
quires one of the simpler A/D converters I've outlined. However, with the addition of 
a high speed A/D peripheral, a few more experiments come to mind. 

Most often when we think of high speed analog, we want to capture video or other 
high bandwidth phenomena that have a voltage level within the range of the A/D. Of 
course, the audio frequencies, while much lower than video, may also require a high 
performance A/D for proper representation. 

The bandwidth of the human voice is about 4000 Hz. These analog signals, when 
spoken into a microphone and fed to an A/D, can be digitized just like any other wave¬ 
form. And, if our voice samples are taken quickly enough and stored, the accumulated 
data can be used to reconstruct the same voice. This reconstructed voice is called 
digitized speech. 

In essence, digitized speech is simply the result of a standard data acquisition tech¬ 
nique When speaking into a microphone and amplifier, your voice results in a fluctu- 
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ating waveform, whose frequency rate varies. If this signal is applied to the input of a 
high speed A/D, and the conversions stored in memory, the computer couldn't care 
whether the source was speech or a nuclear reaction. The analog fluctuations would be 
digitized at discrete sampling intervals and stored. If the stored samples are output to a 
D/A at the same rate they were taken, speech will be reproduced. The fidelity of this 
reconversion is a function of the sampling rate. 

Most of the intelligence or information content of human speech occurs in the fre¬ 
quency region below 1500 Hz. Obviously, sampling this waveform at 25 samples per 
second would be useless. It must be sampled very rapidly to retain anything of signifi¬ 
cance. 

There is a specific law known as the "Nyquist criterion" that is used to determine the 
optimal sampling rate. In theory, this law states that at the very minimum, the sample 
rate must be twice the frequency of the input waveform. Thus, if the human voice ex¬ 
tends to 4 Hz, then the minimum rate should be 8000 samples per second. This also 
presumes an ideal filter on the output, the existence of which is about as ephemeral as 
perpetual motion. In actuality, the sampling rate should be 3 or 4 times the highest in¬ 
put frequency. To digitize voice accurately requires a sampling rate of 12 Hz to 16 Hz. 
If, on the other hand, we shoot for just the lower frequencies, we can get by with 3 Hz 
or 4 Hz. 

The possibility of using this speech technique has to be considered in light of the 
' availability of large amounts of memory. At a 4 Hz sample rate, one second of speech 

takes 4000 bytes of memory. If you have added more than the 2 K of memory in the 
original configuration of ZAP, then perhaps you'll want to experiment with digitized 
speech. Even with just 2 K you should hear something. 

A fairly simple program is needed to coordinate the digitization process and store the 
data: 

START EQU 400 
END EQU COO 

TRIG EQU A8 
IPORT EQU 04 
SAMP EQU 38 

INP IN IPORT 

CP TRIG 

JP NZ, INP 
LD HL, START 

AGAIN IN IPORT 
LD (HL), A 
CALL DELY 
INC HL 
LD A,H 
CP END 

JP 
HALT 

NZ, AGAIN 

DELY LD B, SAMP 
DCR DEC B 

JP 
RET 

NZ, DCR 

Memory table start HL address 
Memory table end H address 
Input start conversion level 
A/D input port 
Sample-rate time constant 

Read A/D input value 
Compare input to trigger level 
Loop again if below trigger level 
Load table start address 
Take a sample 
Store sample in memory 
Delay between samples 

Test to see if at end of table 
If not, take another sample 

Start delay timer 

When the program is executed, it will scan the A/D input port and compare the read¬ 
ing to A8 hexadecimal (about 65% of full scale). When speech is present, the audio 
level will presumably exceed this trigger level. Wrhen this happens, the program sets the 
address of the storage table and starts dumping data samples into it at a rate of about 
4000 per second. The rate is determined by the value of "SAMP." The higher the num¬ 
ber, the lower the sampling frequency. W’hen the table is filled, the program stops and 
the memory will contain a digitized representation of whatever was spoken during the 
sample time. For 2 K of memory, only Yi second of speech will be captured. 

To hear this stored data, use the program outlined in the section on D/A converters. 
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Set the limits to be the area of the memory table, then choose a time constant that 
results in putting out the samples at the same rate that they were taken. (It is also possi¬ 
ble to create a digital reverberation system using this hardware, but for decent fidelity 
12- or 14-bit converters are required.) 

Because digitized speech is a specialized application, the D/A circuit is modified 
slightly to include a low-pass filter. This will improve the sound quality. The modified 
circuit is shown in figure 8.13. 

8-3IT 

PARALLEL ( 
INPUT 

OT 

06 

05 

04 
D3 

02 
0) 

v.00 

r 
6V 

♦V REF 
A 

♦ SV 

L 
MSB 1 

5 

6 

At 

A ^ 

♦V REF 

1 Al IT 
VW * 

7 
A3 

0 
A4 -V REFI 

9 
AS ICO 

10 
A C. MC1408-8 | 

11 

A*D 

A7 RC 

12 a a 

LSB 

40 

VEE COMP 

3 16 

14 

13 

47pF 

-12v 

SPAN 
AOJ 

IK 

3.3K 

10K 
ZERO 
AOJ 

♦ 3V 

J 
3.9K 

LOW PASS FILTER 

iomf iomf 

IC9 
LM301A 

-12V 

10K 

m 

6 SK 
-Wr 

m 

IT71 O.i^r 

10K 

« I 

s 
rj 

Figure 8.13 An 8-bit D/A converter with a low-pass filter. 
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Using ZAP for High Resolution Data Acquisition 
Up to this point our discussion has concerned experimenting with ZAP. Some 

aspects of these designs are useful in noneducational applications, but for the most part 
they are intended more as teaching aids than as replacements for expensive monitoring 
equipment. However, it is possible to add more specialized interfacing to ZAP which 
allows it to be used in such a manner. 

The 8-bit A/D converters presented thus far have limited resolution and are single¬ 
channel devices. They are adequate for measuring temperature in a solar heating sys¬ 
tem, but it is doubtful that they have the resolution to monitor the temperature gra¬ 
dient along a length of heating duct. The sensors used to measure such parameters 
would need to have a higher resolution than ambient air temperature sensors. For a 
range of —20 to 108°C, an 8-bit A/D could provide 0.5° resolution. In a solar heating 
application, considering the variations in air movement, cloud cover, and general 
weather patterns, this is as much resolution as you would need. Within the system, 
however, there are areas that will require closer measurement. 

A solar system is a typical example. After installation the next step is usually to in¬ 
vestigate how to increase its efficiency. Nine times out of ten this requires cutting heat 
losses in the pipes and ducts. One way to determine such loss is to place temperature 
sensors along the heat distribution path and look for cold spots. The measured dif¬ 
ferences between sensors may be very small, a few tenths of a degree or so, but the 
overall losses could be significant. Measuring temperatures to tenths or hundredths of a 
degree and maintaining the same dynamic range requires more than 8-bit resolution. 
Something between 10 and 12 bits is needed. 

The situation is further complicated by the large number of points that may need 
monitoring within a system. It's rare to find only one temperature indicator in the sys¬ 
tem. At the very least there would be six: inside air, outside air, storage tank top, stor¬ 
age tank bottom, collector, and distribution air temperature. 
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Very few commercial data acquisition systems use a single channel. Usually they 
come with either eight or 16 multiplexed channels. The input of one A/D converter is 
switched (usually on a demand basis) between the channels and the results are com¬ 
piled and averaged by the computer. This information can be logged on recording tape, 
transmitted serially to another system, or used to run a real-time display. What one 
does with the data is a function of the application program. 

There are various ways to configure ZAP for high-resolution data acquisition. One 
is to simply to replace the 8-bit A/D with a 12-bit binary converter. When the conver¬ 
sion is finished, 12 bits of parallel data are available. Depending upon the converter 
chosen, many outboard analog components might still be required, but the process is 
straightforward. Unfortunately, these converters are not what you would call inexpen¬ 
sive. Although they are becoming cheaper every day, at this writing they are still con¬ 
siderably more expensive than 8-bit converters of similar speed. 

Most 12-bit binary converters are expensive because they are designed to give the ap¬ 
pearance of parallel converters. Toggle the convert enable line and zip, there's 12 bits 
of answer. When the computer wants this data, it scans, manipulates, and stores it in a 
table for use by other programs. Making the hardware section of an A/D interface less 
expensive involves doing less in parallel. Taking the alternative serial approach gener¬ 
ally requires more time and additional data manipulation. We can opt for the lowest 
expense and let our computer do most of the work. We have already demonstrated 
how to eliminate counters and timing logic by doing these functions in software. 

An 8-Channel 3Va-Digit AC/DC Interface for ZAP 
The solution to the high resolution versus expense question comes in the form of a 

3 Vi-digit multiplexed A/D converter chip. The MC14433 CMOS integrated circuit is 
intended primarily for use in digital voltmeters (DVMs) but enjoys a variety of other 
applications because of its versatility. It is a single-channel 11-bit converter, but it is 
called 3Vi digits. The output is BCD (binary-coded decimal) and it specifically covers a 
range of —1999 to +1999 counts. Basic chip specifications are as follows: 

MC14433 31/i-Digit A/D Converter 

Accuracy: ±0.05% of reading ±1 count 
Two voltage ranges: 1.999 V and 199.9 mV 
25 conversions per second 
1000 Mfl input impedance 
Auto zero 
Auto polarity 
Over, under, and auto ranging signals available 

The MC14433 is a modified dual-ramp integrating A/D converter and is outlined in 
figure 8.14. The conversion sequence is divided into two integration periods: unknown 
and reference. During the VM (unknown input) integration sequence, the unknown 
voltage is applied to an integrator with a defined integration time constant for a prede¬ 
termined time limit. The voltage output of the integrator then becomes a function of 
the unknown input input. The more positive the input, the higher the integrator out¬ 
put. 

During the second cycle of the integration sequence, a reference signal of 2.000 V is 
connected to Vw. This causes the integrator to move toward zero while the digital cir¬ 
cuitry of the chip keeps track of the time it takes to reach zero. The time difference be¬ 
tween the two integration sequences is then a function of their voltage difference. If 
2.000 V were the applied Vw then t2 would equal ti. The unknown voltage is equivalent 
to the ratio of the periods times the voltage reference (V*£t). This is also known as a 
ratiometric converter. The full scale of the converter is determined by V*^. Changing 

to 0.200 V will make the 1999 count output represent 199.9 mV instead of 
1.999 V full scale. 
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Figure 8.14 A simplified representation of a dual-ramp A/D converter. 

The output of the DVM chip is a combination of serial and parallel data. There are 
digit-select and 4 BCD data lines: 

BCD Output Lines 

Pin 23 Q3 (MSB) 
Pin 22 Q2 
Pin 21 Ql 
Pin 20 QO 

Digit-Select Outputs 

Pin 19 DSl (MSD) 
Pin 18 DS2 
Pin 17 DSl 
Pin 16 DSO 
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With respect to what the computer sees through 74LS04 output buffers, the digit 
select output is low when the respective digit is selected. The most significant digit (Vi 
DSl) goes low immediately after an EOC (end-of-conversion) pulse and is followed by 
the remaining digits in a sequence from MSD to LSD. The multiplex clock rate is the 
system clock divided by 80; two clock periods are inserted between digit outputs. 

During DSl, the polarity and certain status bits are available. The polarity is on Q2 
and the Vi digit value is at Q3. If Q2 is a "1", then the input voltage is negative, and if 
Q3 is a "0", then the Yi digit is a 0. 

Figure 8.15 details the schematic of the 8-channel interface board. As shown, it has 
the following capabilities: 

ZAP 31/2-Digit DVM Interface 

• 8 programmable-input channels 
• AC or DC input capability 
• Programmable gain of 1, 10, or 100 
• Ranges of 0 - 200 mV, 0-2 V, 0-20 V, or 0 - 200 V 
• Input overvoltage protection 

IC 1 is the MC14433 DVM chip. It is set for approximately 25 conversions a second 
and all outputs are buffered. IC 2 is a precision voltage reference chip that supplies the 

Vref signal. It is nominally 2.5 V and is trimmed to 2.000 V and 0.200 V with two po¬ 
tentiometers. While a zener diode might provide the same voltage, the temperature 
drift associated with such components makes them inadvisable in this application. 

IC 5 is configured as a set/reset flip-flop. When the conversion is finished, an EOC 
signal sets IC 5, indicating to the computer that data is available. When the computer 
finishes reading the data, it resets this flip-flop and awaits the next conversion. 

ICs 1, 2, 3, and 4 constitute a single-channel 3V2-digit converter. It has a range of 
either 0.200 V or 2.000 V determined by VRcr. To achieve multichannel operation and 
AC capability, it is necessary to place an input multiplexer and AC to DC converter in 
front of IC 1. 

+5 VOLTS SUPPLY 

1. ALL RESISTORS ARE 5% 1/4 W UNLESS OTHERWISE NOTED 

2. ALL CAPACITORS ARE 100 V CERAMIC UNLESS OTHERWISE NOTED 

IC# TYPE ♦ sv -5V OND 

1 MC14433 24 12 13 

2 MC1403 1 3 
3.4 74LS04 14 7 

5 7474 14 7 

6.7 CD4053 16 7 8 

8 C04051 16 7 8 
9 7445 16 8 

10 LM324 4 11 

14 * 8 

CTRL OUTPUT 

O AX 

1 AY I I I 
CTRL Jil I | 
INPUT0 

1 SPOT I 

I_1 

PIN DIAGRAM OF SIGMA FUNCTIONAL DESCRIPTION OF A SINGLE U OF 3) 

RELAY TYPE 291TEJA2-5S SWITCHING SECTION OF A CD<053 CMOS SWITCH 
1< PIN DIP PACKAGE 

Figure 8.15 An 8-channel 3 lb-digit 0—200 V AC/DC DVM interface (continued on next page). 
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Figure 8.16 shows the voltage reference and range selection setup of this interface. 
The MC14433 can cover either 0—199.9 mV or 0—1.999 V. The ranges depend upon 
the level of Vw. When B5 of port 1 is low, switches 5 and 6 are in the positions shown. 
This would apply 2.000 V to WREF input and set the integration time constant with an 
82 kfl resistor. With B5 = 0, VREF is 0.200 V, and the integration resistor is 10 kfl. 

Figure 8.17 illustrates the input subsystem in simplified terms. SWl and SW2 repre¬ 
sent the gain selection section. As shown, the gain is 1 and no divider network is en- 

' abled. When an input relay is closed (controlled through IC 9), the input voltage of 
that channel is sent directly to the input of IC 1 through a 1Mft resistor. If the interface 
is set for DC and a gain of 1, a 1.400 V input signal at channel 3 would be read directly 
as 1.400 V by the DVM chip. If, however, 150 V were suddenly applied, it would be 
shunted through Zl and Z2, which protect IC 1. The data read by the computer will in¬ 
dicate an out of range condition because the input would be shunted to 4 V. 

Closing SWl or SW2 forms a divider network that allows the computer to read these 
higher voltages. A 10:1 divider is formed by closing SWl. The result is a divider net¬ 
work consisting of the 1 Mfl resistor Rl, and a 111 kfi resistor R2 to ground. An 8 V 
input signal would be read as 0.800 V at the input of IC 1. The programmer should 
keep in mind that a divider was used on that channel and multiply the answer by 10 
when recording it. 

Closing SW 2 forms a 100:1 divider. The mathematics is the same except that the 
resistor (R3) is now 11.11 kQ. An 8 V input would become 0.080 V and a 150 V input 
would become 1.500 V. Obviously, proper range selection is necessary to maximize 
resolution. 

An additional feature of this interface is the ability to accommodate AC inputs. This 
is accomplished by simply converting the AC signal to DC after the divider section out¬ 
put. IC 6 and IC 7 function as single-pole, double-throw switches to gate the converter 
in or out of the signal path. The actual AC-to-DC converter is shown in figure 8.18. 

This device is known as an average RMS (Root Mean Square) converter. If you 
apply a 1.0 V peak AC signal to it, it will output 0.707 VDC. This is the technique used 
in most digital multimeters. This is also the way we commonly express AC voltages. 
For example, household 115 VAC is 115 V average RMS. The peak is about 176 V. 
The converter passes both AC and DC because there is no blocking capacitor on the in¬ 
put. If it is inadvertently switched into a DC signal, it will multiply the reading by 
1.414. 

SW5 

Figure 8.16 Voltage reference and integration time-constant modification circuitry for the digital 
voltmeter. 
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ANALOG 
INPUTS 

RL1 

PROTECTION MULTIPLEXER 

CHANNEL 1 

CHANNEL 2 

CHANNEL 3 

CHANNEL 4 

CHANNEL 3 

CHANNEL 6 

CHANNEL 7 

CHANNEL 8 

Figure 8.17 DVM input conditioning sections. 

INPUT BUFFER AC-TQ-OC CONVERTER RIPPLE FILTER 

♦5V 

OC 
OUTPUT 

Figure 8.18 A schematic diagram of an AC-to-DC converter. 
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Exercising the Interface with a Software Driver 

The interface is attached to ZAP through I/O ports. It takes 10 input bits and 8 out¬ 
put bits for full operation. They are arbitrarily chosen as ports 1 and 4 for this descrip¬ 
tion. The actual choice will depend on what addresses you wire when you are configur¬ 
ing ZAP. These ports are not used for anything in the original description and will re¬ 
quire the proper port hardware to be added. Summarizing the I/O requirements for the 
DVM (digital voltmeter) interface: 

Command Output Byte (port 1 output) 

B7 EOC enable or disable Disable=1; Enable=0 
B6 AC or DC select AC=0; DC=1 
B5 2.0 V or 0.2 V range 2.0 V=0; 0.2 V=1 

B4) 0,0=X1 
B3 gam code 

0,1 “X10 

j 1,0=X100 

B2 ) 

B1 

• channel code channels 0—7 binary 
BO J 

Status Input Byte (port 4 input) 

B7' 
B6 
B5 , not used 
B4 

r 

B3 
B2 
Bl out of range 
BO end of conversion 

Data Input Byte (port 1 input) 

B7 1st digit 
B6 
B5 

2nd digit 
3rd digit 

digit enable 

B4 4th digit 

B3 ) 
B2 1 
Bl 1 ► BCD value 

BO ) 

when 67=0 then: B6 
B5 not used 
B4 
B3 1/2 digit value 
B2 polarity 
Bl not used 
BO autoranging status bit 

This interface uses a software driver to reduce hardware complexity. The program is 
not unlike a communications driver. To obtain data from the interface effectively, the 
computer must be synchronized with the DVM chip and must perform a specific se¬ 
quence of operations to demultiplex the input data stream. 

The actual program that interfaces to and stores the values from the DVM chip is 
written as a subroutine. All the information necessary for proper execution of the 
driver is provided in the DE register pair at the time of the call. Its contents will tell the 
interface which channel to set, whether it should be AC or DC, and which Vw and 
gain to use. One channel is converted every time the driver routine is called. 

The information set in the DE register pair at the time of the call is the command out- 
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put byte (port 1 output), and each bit has the designations previously listed. The only 
difference is that bit 7 (the enable/disable bit to the A/D converter) is sent as a logic 0 
when doing a call. The driver will set it to an enable condition after it has pulled in the 
proper relay and allowed a 1.3 ms bounce delay. 

Demultiplexing the output of the DVM chip is fairly straightforward. Following the 
call, the outputs to the interface close the proper switches, and the central processor 
hangs in a loop waiting for an end-of-conversion signal. When this happens, the pro¬ 
gram knows that the next 4 digits of data are what it wants. The DVM chip sets each of 
the digit select lines successively, and the program records the values of the 4 BCD data 
lines each time. It strips the status and polarity bits from the MSD Vi-digit byte and 
reformats and stores the voltage input value in 4 bytes of memory. The 3 whole digits 
are stored in BCD notation and occupy 3 of the bytes. The l/a digit, polarity, and out 
of range indication are located in the fourth byte. Polarity is indicated by setting the 
MSB. A positive reading is a logic 1 and a negative input is a logic 0. The Vi-digit value 
can only be a 0 or 1 and occupies the LSB of the quantity. Out of range is handled with 
a little program manipulation. If the driver detects that the incoming reading is not 
within range, it sets the equivalent of +2 in the Vi-digit byte. Obviously, this is an il¬ 
legal condition for a DVM only capable of counting to 1999. The programmer using 
this stored data should check the limits of the data before acting upon it. 

When the driver completes its operation, it has acquired a 3Vi-digit reading and 
stored it as 4 bytes in a special table in memory. The 8 channels of data constitute a 
32-byte table. The location of a particular channel's data is found by a simple expres¬ 

sion: 

The 4-byte data starts at memory location L+4(N — 1) 

where L = starting address of memory table 
N = channel number (1 to 8) 

Figure 8.19 is the assembly listing of the program that exercises this DVM interface. 
When assembled, it occupies less than a page of memory. 

Note: One caution should be kept in mind when measuring AC signals with this in¬ 
terface. The ground on the DVM interface is the same as the computer's and a potential 
short circuit exists unless either the computer power supply or the measured voltage is 
isolated. 

0100 * 
0110 *** MC14433 3 1/2 DIGIT A/D CONVERTER DRIVER 
0120 * 
0125 * REV* 1*9 
0130 * 
0140 DIP EQU 1 DATA INPUT PORT NUMBER 
0150 SIP EQU 4 STATUS INPUT PORT NUMBER 
0160 COP EQU 1 COMMAND OUTPUT PORT NUMBER 
0170 EEOC EQU 200 ENABLE EOC INPUT 
0180 DEOC EQU 000 DISABLE EOC INPUT 
0190 * 
0200 * 
0210 * CONVERTED CHANNEL . DATA BUFFERS 
0220 * 
0230 CHANO DU 000000 
0240 DU 000000 
0250 CHAN1 DU 000000 
0260 DU 000000 
0270 CHAN2 DU 000000 
0280 DU 000000 
0290 CHAN3 DU 000000 
0300 DU 000000 Figure 8.19 A listing of the assembly-language 
0310 CHAN4 DU 000000 program that exercises the digital voltmeter. 
0320 DU 000000 
0330 CHAN5 DU 000000 
0340 DU 000000 
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0350 CHAN6 DU 000000 
0360 DU 000000 
0370 CHAN7 HU 000000 
0380 DU 000000 
0390 * 
0400 * INTERMEDIATE DATA BUFFERS 
0410 * 
0430 CHAN DB 000 CURRENT CHANNEL NUMBER 
0440 CCP DU 000000 COMMAND CHANNEL PARAMETER 
0460 * 
0470 * 
0480 *** START A/D CONVERTER 
0490 * 
0550 * 
0560 START L.D ArE 
0570 LD (CCP)rA 
0580 AND 007 
0590 LD (CHAN)f A 
0600 LD IXfCHANO 
0910 L. D DfO 
0920 LD ErA 
0930 SLA E CALCULATE BUFFER OFFSET 
0940 SLA E 
0950 ADD IX r DE 
0960 * 
0970 * SELECT CHANNEL AND START CONVERSION 
0980 * 
0985 LD B r 3 SET CYCLE COUNT 
0990 SCSC LD Af(CCP) 
1000 OUT COP SELECT CHANNEL 
1005 CALL DELAY 
1010 OR EEOC ENABLE EOC OUTPUT 
1020 OUT COP COMMAND A/D CONVERTER 
1030 * 
1040 * UAIT FOR EOC 
1050 * 
1060 UEOC IN SIP READ CONVERTER STATUS 
1070 BIT OrA TEST FOR EOC 
1080 JR ZrUEOC JUMP IF NOT READY 
1085 DJNZ SCSC 
1090 BIT If A TEST FOR OVERANGE 
1100 JR NZfOVER JUMP IF TRUE 
1110 * 
1120 * CONVERSION DONEfPROCESS FIRST (MSD) DIGIT 
1130 * 
1140 MSDO LD Bf200 SELECT DIGIT 1 
1150 CALL RDIG UAIT AND READ DIGIT 1 
1160 CPL 
1170 RRCA RIGHT JUSTIFY DIGIT VALUE 
1180 RRCA 
1190 RRCA 
1200 AND 1 ISOLATE 
1210 LD EfO INITIALIZE STATUS BYTE 
1220 BIT 2rD TEST POLARITY 
1230 JR NZfMSD3 JUMP IF POSITIVE 
1240 LD Ef200 LOAD POLARITY SIGN 
1440 * 
1450 * SAVE MSD AND CURRENT POLARITY 
1460 * 
1470 MSD3 OR E ADD POLARITY SIGN TO MSD 
1480 LD (IX+O)fA SAVE IN DATA BUFFER 
1500 * 
1510 * PROCESS 2ND DIGIT 
1520 * 
1530 RRC B SELECT DIGIT 2 Figure 8.19 continued 
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1540 CALL RDIG WAIT AND READ DIGIT 
1550 AND 017 ISOLATE 
1560 LD <IX+1)fA STORE SECOND DIGIT 
1570 * 
1580 * PROCESS 3RD DIGIT 
1590 # 
1600 RRC B SELECT 3RD DIGIT 
1610 CALL RDIG WAIT AND READ DIGIT 
1620 AND 017 ISOLATE 
1630 LD (IX+2)fA STORE 
1640 * 
1650 * PROCESS 4TH DIGIT 
1660 * 
1670 RRC B SELECT 4TM DIGIT 
16S0 CALL RDIG WAIT AND READ DIGIT 
1690 AND 017 ISOLATE 
1700 LD (IX+3)fA STORE 
1710 RAPUP RET 
1720 * 
1730 * LOAD 2.000 OVERRANGE VALUE INTO DATA BUFFER 
1740 * 
1750 OVER LD A f 2 LOAD MSD VALUE 
1760 LD (IX+O) ?A 

1770 XOR A 
1780 LD (IX+1) rA LOAD LSD VALUES 
1790 LD (IX+2) r A 
1800 LD (IX+3) *A 
1810 JR RAPUP 
1870 * 
1880 # 
1890 * READ DIGIT ROUTINE 
1900 * 
1910 RDIG IN DIP READ DATA BYTE 
1920 CPL CONVERT TO HIGH TRUE LOGIC 
1930 LD Dr A SAVE COPY 
1940 AND B TEST FOR GIVEN DIGIT READY 
1950 JR Zf RDIG JUMP IF NOT 
1960 LD AfD RESTORE A REGISTER 
1970 RET RETURN TO CALLER 
1980 DELAY LD Cf 377 
1990 DELI DEC C 
2000 RET Z 
2010 JR DELI 

Figure 8.19 continued 

Potential Applications 
I feel that data acquisition is a natural application for ZAP. The interface outlined 

above can be used in a solar heating system to monitor and record pertinent data. 
Using the facilities of the ZAP monitor and the DVM interface routine, an 8-channel 
data logger is practical. In general, all thal would be required is a supervisory program 
that calls the DVM 8 times to obtain the 8 sensor inputs. It then sets the limits of the 
memory table to a serial output subroutine and stores the readings on a cassette. This 
could be done continuously or at regular intervals. The ultimate system would include 
a real-time clock so that these readings, as well as the times at which they were taken, 
could be recorded. 

Real-Time Clock 
If ZAP is going to be used for critical data acquisition or control functions, consider¬ 

ation should be given to real-time synchronization with process events. A simple defi¬ 
nition of a real-time system is one that responds to the need for action in a period of 
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time proportional to the urgency of the need. It boils down to the fact that the comput¬ 
er must be capable of performing a specific action at a specific time. For this to happen, 
the computer must be able to "tell time." 

We can accomplish this by using either software or hardware applications. The 
simplest technique is to use a clock circuit (figure 8.20) to provide a time tick to the cen¬ 
tral processors nonmaskable interrupt line. It can be every 60th, 10th, or 1 second, as 
suggested in the schematic. When the computer acknowledges the interrupt, it first 
saves all the registers from the program it was executing, and then services the real-time 
interrupt. Frequently, the first action is to increment an internal counter that keeps 
track of elapsed time. Usually it's a value equivalent to the total number of clock ticks, 
whether in seconds or milliseconds. Once this regular interval has been established, it is 
easy for the computer to perform real-time functions. 

Clock resolutions down to milliseconds sound great and make interval timing ex¬ 
tremely accurate. However, I doubt most ZAP builders would want to use such an in¬ 
terface in light of the complex software involved. I much prefer an interface that is 
easier to implement and more likely to be used. 

Essentially, the kind of real-time system most appealing to ZAP owners has a resolu¬ 
tion of perhaps 1 minute rather than 1 ms. Also, it's best if it can be read directly in 
hours and minutes rather than as a total clock count. A direct benefit is reduced over¬ 
head. The computer does not have to acknowledge the clock update or scan status flags 
as often. At first glance, it may not seem like much of a saving, but some routines can 

use up to 10 percent of the processor time handling a millisecond clock interrupt. 

ICl 
7414 

Figure 8.20 A simple time-base generator for an interrupt-driven real-time clock. 

An Old Clock Chip to the Rescue 
The easiest way to provide an hourly and minute-by-minute input is to interface the 

computer to an MOS/LSI clock chip similar to that found on most digital clocks or 
watches. There are two approaches to the design of a clock interface: one method is to 
let the clock circuit operate independently from the computer, attached in such a way 
that the computer can monitor the output lines and extract a time value on the fly. The 
software necessary for this approach would be very much like the DVM interface 
described previously. The other method, which I prefer because it involves less soft¬ 
ware, is to give the computer complete control over the information flow of the clock 
in a synchronous manner. 
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Figure 8.21 shows such a clock interface. This circuit, manually preset to keep it sim¬ 
ple, is computer directed. The basic 4-chip circuit consists of an MM5312 4-digit BCD/ 
7-segment output digital clock chip, an MM5369 time-base generator, and two MOS- 
to-TTL buffers to send data to the processor. 

Time is set on the chip by grounding the slow and fast set lines, pins 14 and 15. To 
know what is being set you must read the interface at the same time, and display the 
time on the 4-digit hexadecimal address display, already part of the expanded ZAP. 

Time is read from the interface as 4 binary-coded decimal numbers. The 8 input lines to 
the computer are attached to an 8-bit parallel input port, and are divided between 4 
digit-enable lines, and 4 BCD digit-value lines. Data appear as a digit enable and an 
associated BCD number. The tens of minutes data is read on BO thru B3 when B5 is 
high (B4, B6, and B7 are low). Similarly, BO thru B3 will hold the tens of hours quantity 
when B7 is high. The interface logic will stay on a particular digit until it is instructed to 
proceed to the next digit. Sequencing is under program control and uses one output bit 
of a convenient parallel port. 

o* DIGIT ENABLE 8C0 VALUE 
ONE BIT OP A OUTPUTS 
PARALLEL PORT V_J 

TO PARALLEL INPUT PORT 

1C* TYPE ♦ 3V ♦ 12V CNO 

1 MM5312 13 23 

2 MMS369 8 2 

3 CD4049 1 8 

4 C04049 1 8 

3 7406 14 7 

6 74147 16 8 
T C04050 1 8 

FOR 12 HOUR OPERATION. PIN 11 
| IS GR0UN0E0 ON THE MM5312. 

♦ 12 TO 15V 
FROM COMPUTER 

1N4002 

V00 

IC2 
MM5369 
CLOCK INTERFACE 

GND 

*-nl 
l« APPROX. 12mA 

ON STAN08Y 

— 12V BATTERY 

m 

Figure 8.21 A schematic diagram of a real-time clock interface. 
a) Using a MOS digital clock chip. 
b) With battery backup. 
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Figure 8.22 shows how the multiplexer line is controlled in this application. One bit 
of an output port is used to pulse multiplexer input pin 22. (All that is required is a 1 ms 
pulse. As an alternative, a one-shot could be triggered from a decoded strobe line of an 
unwired port.) At any time, 1 of the 4 digit-enable lines will be low and a digit's value 
will be on the BCD output lines. Just determine which digit it is and store the value. 

Next we pulse the multiplexer input to enable the next digit and save it as well. Con¬ 
ceivably, it takes only 4 iterations of this procedure to obtain a complete 4-digit 
reading. If you prefer a more orderly approach, you can follow the program flow out¬ 
lined in figure 8.23. The only difference is that it waits until the chip cycles to the begin¬ 
ning before storing the readings. 

multiplex timing input 

MINUTES (UNITS) 

Figure 8.22 The multiplex timing sequence 
for the display in the circuit of figure 8.21. 

MINUTES (TENS) 

HOURS (UNITS) 

HOURS (TENS) 
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CHAPTER 9 

BUILD A CRT TERMINAL 

LOW COST VERSATILE CRT TERMINAL 

This chapter describes the design of a low-cost features-oriented cathode-ray tube 
(CRT) terminal. Two MOS/LSI devices from Standard Microsystems Corporation 
reduce the number of parts required for a CRT terminal yet enhance its capabilities. 

The two devices, the CRT 5027 video timer and controller and the CRT 8002 video 
display attributes controller, provide virtually all of the circuitry for the display por¬ 
tion of the CRT terminal. (See Appendices C8 and C9 for specifications.) 

The terminal is designed to stand alone and communicate via an RS-232C interface 
with any computer system. If, in the expanded ZAP, the 6-character hexadecimal dis¬ 
play proves inadequate, then the experimenter has only to construct this unit and at¬ 
tach it to the serial port already assembled. 

Device Description 

The CRT 5027 contains the logic required to generate all of the timing signals (ver¬ 
tical and horizontal synchronization, page refresh memory address, etc.) required by a 
CRT terminal. The entire display format including interlace/non-interlace, characters 
per row, rows per frame, scans per row, horizontal synchronization pulse width, and 
timing are user programmable for all standard and most nonstandard formats. 

Although the CRT 5027 is basically structured for use with its own microprocessor, 
this design describes a "dumb terminal" using a low-cost PROM and standard TTL 
logic to replace the microprocessor control. While increasing the number of the parts, 
this design results in a low-cost, high quality alphanumeric/graphics terminal. 

The CRT 8002 provides a 7 X 11 dot matrix, 128 character generator ROM, and a 
high-speed video shift register cursor. It includes logic to generate such functions as 
underline, blinking, reverse video, blanking, and strike-through. Additional wide and 
thin graphics modes allow the creation of line drawings, forms and unique graphic 
symbols. 

Terminal Description 

As with most electronic designs, a CRT terminal involves a large number of perfor¬ 
mance and cost trade-offs. A screen format of 16 rows of 64 characters per row was se¬ 
lected to minimize memory requirements (1 K bytes) and keep the video frequency 
within the limits of lower cost video monitors. An 80-character line would have not 
only increased the video frequency beyond the bandwidth of many low-cost monitors, 
but also would have increased the memory requirements. Similarly, more rows per 
page would have increased the memory requirement unless the characters per line were 
reduced. 

In many microprocessor applications, the page memory is shared with the processor 
via a data bus. In this application, the page memory is used strictly by the CRT with 
data input synchronously, character-by-character, into the cursor position. 

Full graphics or attributes may be selected on a character-by-character basis using 
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control words on the input data bus. A block diagram of the terminal is shown in figure 
9.1. 

Figure 9.1 A block diagram of a lov/-cost cathode-ray tube terminal. 

Character Format 

The CRT 8002 requires a minimum 8 X 12 character block to form its basic 7 X 11 
character and to provide line and character spacing. However, in order to allow fram¬ 
ing a character fully for a reverse video presentation, the horizontal character block 
must be increased to 9 or 10 dots. For the same reason, allocating 13 lines per character 
allows top and bottom framing as well. 

With the standard TV sweep rates of 60 Hz (vertical) and 15,750 Hz (horizontal), 
there are 15,750 + 60 = 262.5 lines per frame. As non-interlaced operation requires 
an even number of lines, a horizontal frequency of 15,720 Hz is used. The 16 rows 
X 13 scan lines per row result in 208 lines of displayed data. The remaining 54 lines 
will be automatically blanked by the CRT 5027 and will provide upper and lower 
margins. 

To allow for left and right margins as well as for retrace time, a total 80 character 
times are allocated per line. A good rule of thumb is that the total number of character 
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times is 25% greater than the actual number of displayed characters. 
The video clock frequency is calculated as follows: 10 (dots per character) X 80 

(character times per line) X 15,720 Hz (horizontal sweep frequency) = 12.576 MHz. 

See the worksheet in table 9.1. 

1. HCHARACTER MATRIX (No. of Dots):..Z. 

2. V CHARACTER MATRIX (No Of HoflZ. Scan Lines):. ..LL 

3. H CHARACTER BLOCK (Step 1 + Oesired Horiz. Spacing = No. in Dots): _!£. 

4. V CHARACTER BLOCK (Step 2 + Desired Vertical Spacing = No. in Horiz. 
Scan Lires):. 

5. VERTICAL FRAME (REFRESH) RATE (Freq. in Hz): . ... 

6. DESIRED NO. OF DATA ROWS:. 

7. TOTAL NO. OF ACTIVE "VIDEO DISPLAY" SCAN LINES 
(Step4x Step6 = No. in.Horlz. Scan Lines): _ .. . 

8. VERT. SYNC DELAY (No. in Horiz Scan Lines):. 

9. VERT. SYNC (No. in Horiz. Scan Lines; T« J!?GJL.p$*):. 

10. VERT. SCAN DELAY (No. in Horiz. Scan Lines; T » f-5? ms*):.... 

11. TOTAL VERTICAL FRAME (Add steps 7 thru 10 * No. in Horiz. Scan Lines): 

12. HORIZONTAL SCAN LINE RATE (Step 5 x Step 11 = Frcq.inKHz):. 

13. DESIRED NO. OF CHARACTERS PER HORIZ ROW: . 

14. HORIZ. SYNC DELAY(No.in Character Time Units;T Z2_/iS**): ... 

15. HORIZ. SYNC (No In Charac'er Time Units;T = 5 57 . 

16. HORIZ. SCAN DELAY (No. in Character Time Units; T =_iLl?Lr/s* •): .. 

13 

6O 

16 

JOS 

JG 

3 

JS 

is.nsLO 

6 

1 

3 

17. TOTAL CHARACTER TIME UNITS IN (1) HORIZ. SCAN LINE 
(Add Steps 13thru 16):. 

18. CHARACTER RATE (Step 12 x Step 17 = Freq. in MHz): .. 

19. CLOCK (DOT) RATE (Step 3 x Step 18 » Freq. in MHz):. ... 

_80_ 

10576 

/a 5 7 6 

’Vertical Interval 
••Horizontal Interval 

Table 9.1 A CRT 5027 worksheet for a 64 characters per row, 16 row, noninterlaced screen format 

Programming the VTAC 

The CRT 5027 VTAC (Video Timer and Controller) is user programmable for all 
timing and format requirements. The programming data is stored in 9 on-chip regis¬ 
ters. Although a microprocessor can easily provide the programming data, a low-cost 
PROM is used in this application. The 9 registers are programmed as follows (see table 
9.2): 

Register 0: This register contains the number of character times for one horizontal pe¬ 
riod, and is normally 1.25 times the number of characters per line, in this case 64 X 
1.25 = 80. As the internal counters are initialized at zero, the actual number in the 
register is 80 — 1 = 79. 

0 1 0 0 1 1 1 □ 
Register 0 

Register 1: This has 3 fields: 

1) bit 7 — one for interlace, zero for non-interlace. In this example, noninterlaced 
operation is selected. 

2) bits 3 thru 6 program the number of character times for the width of the horizon¬ 
tal synchronization pulse. This parameter is monitor dependent and is typically 
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5 ns. Because there are 80 character times for a 63.6 /xs horizontal scan time 
(1 + 15,720), each character time is 0.801 /xs; 7 character times will be used to 

generate a 5.56 /xs pulse. 

3) bits 0 thru 2 set the horizontal ''front porch." This essentially positions the data 
horizontally. The monitor's specification will determine initial programming al¬ 
though some experimentation may be required to center the display exacdy. Six 
character times were selected for the front porch. 

0 0 1 1 1 1 1 0 

Register 1 

ADDRESS 
REG. * A3 A0 FUNCTION BIT ASSIGNMENT HEX. DEC. 

0 0030 HORIZ LINE COUNT 20 1° 1 0101 1 1 1 1 1 1 1 1 9F 19 

1 0001 INTERLACE 0 
H SYNC WIDTH 7 
H SYNC DELAY 6 0101111 i|i 1 1 0 3E 

0010 SCANS/DATA ROW_J3_ 
CHARACTERS/ROW X 1 i 0 0 0 1 1 £3 99 

0011 SKEW CHARACTERS_L 
DATA ROWS /6 — 

100101111 8F m 

0100 SCANS/FRAME _ 262 
X = 0 0 0 0,0 011 03 

0101 VERTICAL DATA START 
= 3 + VERTICAL SCAN DELAY: 
SCAN DELAY —35, 
DATA START 

0 01110 0 1C 2.8 

6 0110 LAST DISPLAYED DATA ROW 
(= DATA ROWS) XIX001111 OF IS 

Table 9.2 A CRT 5027 register-programming worksheet for a 16 x 64 screen format 

Register 2: This has two fields: 

1) bits 3 thru 6 (bit 7 is not used) set the number of scans per character. In this case, 
we have defined the character as 10 X 13, so the binary equivalent of 13 — 1 83 
12 is used (all CRT 5027 counters start at zero, not one, so programming of 
counters is always one less than the number). 

2) bits 0 thru 2 contain a 3-bit code for the number of characters per line. From the 
data sheet the code for 64 is Oil. 

1 1 0 0 A 1 1 

Register 2 

Register 3: This has two fields: 

1) bits 6 and 7 delay the blanking cursor and synchronization timing to allow for 
character generator and programmable memory propagation delays. Generally, 
one character time will allow for these delays. 

2) bits 0 thru 5 define the number of data rows, once again starting with binary zero 
for one line. 16 — 1 = 15 will be programmed. 

□ 0 0 0 1 1 □ 1 

Register 3 

Register 4: Register 4 sets the number of raster lines per frame. For the noninterlaced 
mode this is derived by the formula (N — 256) + 2 = 3. 
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Register 4 

Register 5: This contains the number of raster lines between the start of the vertical 
synchronization pulse and the start of data (vertical synchronization + back 
porch). This time must be long enough to allow for the full retrace time of the 
monitor and to allow vertical positioning of the display. We will use 28 here. The 
front porch will be calculated by the CRT 5027 as 262 — (13 X 16) — 28 = 26. 

0 0 0 1 1 1 0 0 

Register 5 

Register 6: Register 6, the scrolling register, is programmed with the number of the last 
data row to be displayed. Since we want to initialize the CRT 5027, this will be 
programmed the same as Register 3 (bits 6 and 7 are not used). 

0 0 0 0 1 1 1 1 

Register 6 

Register 7 and Register 8: These registers contain the cursor character number and row 
number respectively. Since the cursor is to be initially positioned at the top left 
corner, both registers will be initialized with all zeros. Subsequent cursor position 
changes will be entered as described under "circuit operation." 

0 0 0 0 0 0 0 0 
Register 7 
Register 8 

Circuit Description 

Referring to figure 9.2, IC 1A, IC IB, IC 4 provide the video dot clock (12.58 MHz) 
and the character clock DCC, which is the dot clock + 10 (each character is 10 dots 
wide). The video dot clock determines the actual video data rate. The character clock 
determines the speed each character is addressed. IC 6A buffers the dot clock input of 
the CRT 8002. A pull-up resistor is used on the output to guarantee the logic one re¬ 
quirement of the VDC input. 

The LOAD command loads the register information required for programming the 
CRT 5027 from the PROM IC 7 to the CRT 5027. The "self load" capability of the CRT 
5027 is used to automatically scan the PROM addresses. LOAD is automatically gener¬ 
ated on power-on by IC ID. 

Because of the bus structure of the CRT 5027, cursor position information is loaded 
on the same bus as the register data. Three-state data selectors IC 14 and IC 15 select 
cursor X position data from counter IC 8 and IC 7 or cursor Y position data from 
IC ID. IC 12 and IC 13 select the address mode for the CRT 5027. Three modes are 
used: "nonprocessor self-load" for register loading, load cursor X position, and load 
cursor Y position. 

IC 16 thru IC 21 decode attribute mode and cursor controls from the ASCII data 
bus. If graphics or special attributes are not desired, IC 16,17, and 21 are not required. 
Similarly, if cursor controls are directly available, decoding them is not necessary. 

IC 19 and IC 20 are 256 X 4 PROMs. Their exact programming can be suited to the 
user needs. The programming used in this terminal is shown in table 9.3. When a key 
designated as an attribute or mode key is depressed, the appropriate control word is 
latched in IC 21; all subsequent data entries will have that word loaded in the upper 4 
bits of programmable memory. This allows the attribute or mode to be changed on a 
character-by-character basis. IC 18, a 2 to 4 decoder, is enabled when a cursor control 
backspace, carriage return/line feed, or \ is decoded and provides the appropriate cur¬ 
sor movement. 

TTL or low power TTL can be used throughout. Shottky TTL is recommended for 
IC 6 due to the fast rise time requirements of the clock input. 
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IC1 74LS04 

IC2 CRT8002 

IC3 CRT5207 

1C 4 74LS160 

ICS 74LS20 
1C 6 74LS04 

1C 7 HM7603 PROM 

IC8 74193 

IC9 74193 

ICtO 74193 

ten 7408 

1C 12 74LS02 

IC1S 74LS74 

1C 14 74LS257 

IC15 741.S257 

IC16 74LSC2 

IC17 74LS00 
acts 741 ss 
IC19 HM7621A PROM 1 

IC20 HM7621 PROM 2 
1C 21 74174 

IC22-IC33 2102A-4 

Figure 9.2 A schematic diagram of a low-cost versatile CRT terminal using the CRT 5027 and CRT 
8002 chips (continued on next page). 
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♦5 

Figure 9.2 continued 
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Operation 

After power-on. Control Q should be depressed to latch the system in the "normal" 
mode. Depressing the space key and the erase key simultaneously will then blank the 
screen. All further character entries will be displayed normally. If other attributes or 
graphics are desired, the appropriate control code is entered. This character will not be 
displayed or cause cursor movement, but will latch the new command. Modes may be 
changed for every character desired. Cursor movement may be decoded from the 
ASCII input by the control key as indicated in table 9.3. 

PROM Programming 

Keyboard Entry Function Address PROM 1 Output PROM 2 Output 

76543210 J?iP?PjPl- ,P.iP>P?Pl. 

Return Carriage Return 00011011 0011 1000 
LF Line Feed 00010101 1011 1000 
Control H Cursor Left 00010001 0111 1000 
RS Cursor Up 00111101 1111 1000 
US Cursor Right 00111111 1111 1010 
Control Q Normal Attribute 00100011 1111 1011 
Control W Blink 00101111 1011 1011 
Control E Underline 00001011 0111 1011 
Control R Reverse Video 00100101 0011 1011 
Control T External Mode 00101001 1101 1011 
Control Y Wide Graphics 00110011 1100 1011 
Control U Thin Graphics 00101011 1110 1011 
Balance of PROM 0011 1110 

Table 9.3 PROM programming for the circuit of figure 9.2. 

The Rest of the System 

Figure 9.3 illustrates the balance of the circuitry required to implement a full 
RS-232C compatible serial I/O terminal. Utilization of MOS/LSI reduces the package 
count to a bare minimum. 

A KR2376 keyboard encoder, IC 1, encodes and de-bounces the keyboard switches 
and provides an ASCII data word to the COM 2017 UART (see Appendices C6 and 
C7). The UART, in turn, provides the serial receive/transmit interface. The data rate is 
programmable by means of the switch controlled input code to a COM 8046 data rate 
generator (see Appendix CIO). 

TERMINAL VARIATIONS 

The terminal described can easily be modified for a wide variety of other screen for¬ 
mats. The following changes are required for an 80-characters per row, 24-row format: 

1. Horizontal sweep rate — to allow for the increased number of displayed lines 
(312), the horizontal sweep rate is increased to 20,220 Hz. 

2. The video oscillator frequency is calculated as 9 (dots per character) X 100 (char¬ 
acter times per row) X 20,220 °* 18.198 MHz. Notice that 9 dots per character 
was selected instead of 10, as 10 would have resulted in a clock frequency of 
20.2 MHz, which is beyond the CRT 8002A's top frequency. IC 4, therefore, 
must be set for divide by 9 rather than 10. 

3. An additional 1 K bytes of page memory is required. Figure 9.4 shows the revised 
address connections. 

4. Register programming for the CRT 5027 follows the worksheet shown in tables 
9.4 and 9.5. 
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Figure 9.3 A schematic diagram of a 
RS-232C interlace for a terminal. 

Figure 9.4 A memory-mapping system 
for a 24 x 80 screen format. 
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1. H CHARACTER MATRIX (No. of Dots):. 

2. VCHARACTER MATRIX (No. ol Horiz. Scan Lines): . 

3. H CHARACTER BLOCK (Step 1 + Oesired Horiz. Spacing = No in Dots): 

7 

U 

±_ 
4. V CHARACTER BLOCK (Step 2 + Desired Vc'lical Spacing • No. in Horiz. 

Scan Lines):. .. .. 13 

5. VERTICAL FRAME (REFRESH) RATE {Freo. in Hz):..60. 

6. DESIRED NO. OF DATA ROWS:.. 2M- 

7. TOTAL NO. OF ACTIVE ‘ VIDEO DISPLAY" SCAN LINES 
(Step4xStep6 = No. in Horiz. Scan Lines): . 3/3- 

8 VERT. SYNC DELAY (No. in Horiz Scan Lines):..L_ 

9. VERT. SYNC (No in Horiz. Scan Lines. T=_^3J_//s*):..L. 

10 VERT. SCAN DELAY (No. in Hcriz Scan Lines; T « 890 2. ua«):..[8_ 

11. TOTAL VERTICAL FRAME (Add steps 7 thru 10 - No. in Horiz. Scan Lines): 336 

12. HORIZONTAL SCANLINE RATE (StepS x Step 11 = Freq.inKHz): .. . 20220 

13. DESIRED NO. OF CHARACTERS PER HORIZ ROW:. & 

14. HORIZ. SYNCDELAY (No. in Character Time Umts.T s**): 3 

15. HORIZ. SYNC (No. in Character Time Unils:T * V W os**): 10 

16. HORIZ. SCAN DELAY (No. in Character Time Units; T ■ 3 46 •):.. 

17. TOTAL CHARACTER TIME UNITS IN (1) HORIZ. SCAN LINE 
(AddStepsl3thrul6):.. 

18. CHARACTER RATE (Step 12 x Step 17 • Freq. in MHz): . . 

19. CLOCK (DOT) RATE (Stop 3 x Step 18 *= Freq. in MHz): .. 

too 
2022. 

IS 198 

'Vetiicaltnterval 
*’Horizontal Interval 

Table 9.4 A CRT 5027 worksheet for an 80 characters per row, 24 row, noninterlaced screen format. 

ADDRESS 
REG# A3 AO FUNCTION BIT ASSIGNMENT HEX. DEC. 

1 

ooco 

0001 

0010 

0011 

0100 

HORIZ. LINE COUNT .100 

INTERLACE 
H SYNC WIDTH_LO 
H SYNC DELAY 

SCANS/DATA ROW. JA. 
CHARACTERS/ROW_IQ. 

SKEW CHARACTERS_-L 
DATA ROWS - 

SCANS/FRAME 336 
X - 

o
 

o
 

o
 0 1 1 I 63 99 

53 83 ] 0 I 1 o | 1 | 0 | 0 | 1 { 1 

1 65 10/ x 1 11 1 0 I 0 I 1 I 0 I 1 

1 97 15/ 

O
 

O
 

o
 

o | o | 1 | o | 1 0 1 0 0 1 c18 40 

0101 VERTICAL DATA START 
= 3 + VERTICAL SCAN DELAY: 
SCAN DELAY _/£_ 
DATA START *1 

0 0 10 1 0 1 a/ 

0110 LAST DISPLAYED DATA ROW 
(«= DATA ROWS) X I x 101 1 0 H11 n a.5 

Table 9.5 A CRT 5027 register-programming worksheet for a 24 x 80 screen format. 
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Appendix A 

Construction Techniques 

CONSTRUCTION TIPS 
As a result of building a project every month for my "Ciarcia's Circuit Cellar" col¬ 

umn in BYTE magazine and of constructing every circuit in this book, I feel I can speak 
as an authority on the subject of prototype construction. A prototype is a nice term 
that describes the one-of-a-kind kluge that you build from a schematic. This is opposed 
to the kit or semi-assembled project that includes a printed circuit board which only re¬ 
quires plugging in components. 

Prototyping a circuit is not easy. There are many dos and don'ts, but successful pro¬ 
totyping is primarily a function of experience. And experience comes only by building 
something. 

The text is purposely laid out with this philosophy in mind. I suggest that you start 
with the power supply. Not only is the rest of the computer useless without it, but it 
has built-in protective circuitry that is very forgiving if you make mistakes. Also, by 
constructing the power supply first, there is less likelihood of destroying the rest of the 
computer as you are testing the power supply. 

In general, the cardinal rule of prototyping is: be neat. The ZAP computer has high 
frequencies. Wiring should be the shortest distance between two connections. The 
longer the wire, the more of an antenna it becomes. In extreme cases, the computer can 
actually cease to function because of induced electrical noise. With the relatively 
slower digital signals carried by the wiring attached to external input and output ports, 
the situation is less critical. Short pulses and high-speed data, such as the signals on the 
central processor control and address lines, are more critical. In these cases, it is always 
a good idea to use additional protective circuitry such as buffers. 

To a certain degree, the ZAP computer can be laid out as you see fit. Figure A.l sug¬ 
gests one approach: it can be wirewrapped or hand soldered. Almost any board large 
enough to accommodate all the chips should suffice. A good choice is a standard S-100 
prototyping card available at most computer stores. There is no particular bus other 
than the standard Z80 signals designated for ZAP because it is primarily intended as a 
single-board system. The 100-pin connector provides a convenient I/O and power con¬ 
nector. Care should be taken if you decide to split the computer schematic and assem¬ 
ble the computer on more than one board. The separation should be between logical 
subsystems; for maximum success, all signals should be buffered in and out of the 
board, e.g., all the memory could be put on a separate card. As outlined in the text, the 
address and data lines necessary to this function are already properly buffered. 

The question of wirewrapping versus soldering is the builder's prerogative. Personal¬ 
ly, I prefer point-to-point hardwiring because it's easier to modify when troubleshoot¬ 
ing. Wirewrapping might be easier where the ZAP circuit has already been tested and 
refined. 

Long power-supply daisy chains should be avoided. Rather than running a single 
+5 V and ground wire, it is better to use a double-sided prototyping board so that the 
top and bottom sides of the board can be set to ground and +5 V respectively. With 
this approach, each chip can be plugged in (using IC sockets) and the power leads 
soldered directly to the copper planes. Wirewrapping or not, it is a good idea to solder 
the power leads to reduce the potential of intermittent connections. Using the ground 
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Figure A.1 A typical layout of the basic ZAP computer. 

plane for wiring is one of the best ways to reduce noise in computers. If you don't have 
a ground plane, then solder heavy wire around the perimeter of the circuit board and 
run short jumpers to it. 

Decoupling capacitors are another must for computer prototyping. Digital-inte¬ 
grated circuits, while being virtually burn-out proof in most applications, are unfor¬ 
tunately susceptible to noise carried along the power lines. Often, it will cause them to 
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go into oscillation. By placing a 0.01/*F to 0.1/iF capacitor between +5V and ground 
about every third IC, the problem is eliminated. Another good idea is to place an elec¬ 
trolytic capacitor at the entrance of any DC power connection to the board. Generally, 
capacitors are tantalum and three pieces would be required for ZAP's three supplies. 

Finally, if you like the concept of ZAP but would rather spend more time applying 
the finished product than testing your construction techniques, you can look into pur¬ 
chasing EPROMs programmed for the ZAP monitor. The monitor for the ZAP com¬ 
puter is available in a 2708 or single-volt 2716 EPROM for $25. Please specify the type 
you want when ordering. These are available from The Micromint, Inc., 917 Midway, 
Woodmere, NY 11598. Telephone (516) 374-6793. 
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Appendix B 

ASCII Codes 

Parity Control 
Space Keybd. 

Dec Octal Hex or Character Equiv. Alternate Code Names 

000 000 00 Even NUL ® NULL, CTRL SHIFT P, TAPE LEADER 
001 001 01 Odd SOH A START OF HEADER, SOM 
002 002 02 Odd STX B START OF TEXT, EOA 
003 003 03 Even ETX C END OF TEXT, EOM 
004 004 04 Odd EOT D END OF TRANSMISSION, END 
005 005 05 Even ENQ E ENQUIRY, WRU, WHO ARE YOU 
006 006 06 Even ACK F ACKNOWLEDGE, RU, ARE YOU 
007 007 07 Odd BEL G BELL 
008 010 08 Odd BS H BACKSPACE, FE0 
009 011 09 Even HT 1 HORIZONTAL TAB, TAB 
010 012 0A Even LF J LINE FEED, NEW LINE, NL 
011 013 OB Odd VT K VERTICAL TAB, VTAB 
012 014 OC Even FF L FORM FEED, FORM, PAGE 
013 015 OD Odd OR M CARRIAGE RETURN, EOL 
014 016 OE Odd SO N SHIFT OUT, RED SHIFT 
015 017 OF Even SI O SHIFT IN, BLACK SHIFT 
016 020 10 Odd DLE P DATA LINK ESCAPE, DC0 
017 021 11 Even DC1 Q XON, READER ON 
018 022 12 Even DC2 R TAPE, PUNCH ON 
019 023 13 Odd DC3 S XOFF, READER OFF 
020 024 14 Even DC4 T TAPE, PUNCH OFF 
021 025 15 Odd NAK U NEGATIVE ACKNOWLEDGE, ERR 
022 026 16 Odd SYN V SYNCHRONOUS IDLE, SYNC 
023 027 17 Even ETB w END OF TEXT BUFFER, LEM 
024 030 18 Even CAN X CANCEL, CANCL 
025 031 19 Odd EM Y END OF MEDIUM 
026 032 1A Odd SUB z SUBSTITUTE 
027 033 IB Even ESC [ ESCAPE, PREFIX 
028 034 1C Odd FS \ FILE SEPARATOR 
029 035 ID Even GS ] GROUP SEPARATOR 
030 036 IE Even RS A RECORD SEPARATOR 
031 037 IF Odd US — UNIT SEPARATOR 
032 040 20 Odd SP SPACE, BLANK 
033 041 21 Even I 
034 042 22 Even 99 

035 043 23 Odd # 
036 044 24 Even $ 
037 045 25 Odd % 
038 046 26 Odd & 
039 047 27 Even 9 APOSTROPHE 
040 050 28 Even ( 
041 051 29 Odd ) 
042 052 2A Odd • 

043 053 2B Even + 
044 054 2C Odd 9 COMMA 
045 055 2D Even — MINUS 
046 056 2E Even • 

047 057 2F Odd / 
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Parity Control 
Space Keybd. 

Dec Octal Hex or Character Equiv. Alternate Code Names 

048 060 30 Even 0 NUMBER ZERO 
049 061 31 Odd 1 NUMBER ONE 
050 062 32 Odd 2 
051 063 33 Even 3 
052 064 34 Odd 4 
053 065 35 Even 5 
054 066 36 Even 6 
055 067 37 Odd 7 
056 070 38 Odd 8 
057 071 39 Even 9 
058 072 3A Even • 

• 

059 073 3B Odd • » 
060 074 3C Even < LESS THAN 
061 075 3D Odd = 
062 076 3E Odd > GREATER THAN 
063 077 3F Even ? 
064 100 40 Odd @ SHIFT P 
065 101 41 Even A 
066 102 42 Even B 
067 103 43 Odd C 
068 104 44 Even D 
069 105 45 Odd E 
070 106 46 Odd F 
071 107 47 Even G 
072 110 48 Even H 
073 111 49 Odd 1 LETTER 1 
074 112 4A Odd J 
075 113 4B Even K 
076 114 4C Odd L 
077 115 4D Even M 
078 116 4E Even N 
079 117 4F Odd O LETTER O 
080 120 50 Even P 
081 121 51 Odd Q 
082 122 52 Odd R 
083 123 53 Even S 
084 124 54 Odd T 
085 125 55 Even U 
086 126 56 Even V 
087 127 57 Odd w 
088 130 58 Odd X 
089 131 59 Even Y 
090 132 5A Even z 
091 133 5B Odd I SHIFT K 
092 134 5C Even \ SHIFT L 
093 135 5D Odd ) SHIFT M 
094 136 5E Odd A 1, SHIFT N 
095 137 5F Even SHIFT O, UNDERSCORE 
096 140 60 Even 1 ACCENT GRAVE 
097 141 61 Odd a 
098 142 62 Odd b 
099 143 63 Even c 
100 144 64 Odd d 
101 145 65 Even e 
102 146 66 Even f 
103 147 67 Odd g 
104 150 68 Odd h 
105 151 69 Even i 
106 152 6A Even i 
107 153 6B Odd k 
108 154 6C Even 1 
109 155 6D Odd m 
110 156 6E Odd n 
111 157 6F Even o 
112 160 70 Odd P 
113 161 71 Even q 
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Parity Control 
Space Keybd. 

Dec Octal Hex or Character Equiv. Alternate Code Names 

114 162 72 Even r 
115 163 73 Odd s 
116 164 74 Even t 
117 165 75 Odd u 
118 166 76 Odd v 
119 167 77 Even w 
120 170 78 Even X 
121 171 79 Odd y 
122 172 7A Odd z 
123 173 7B Even { 
124 174 7C Odd 1 • VERTICAL SLASH 
125 175 7D Even } ALTMODE 
126 176 7E Even (ALT MODE) 
127 177 7F Odd DEL DELETE, RUBOUT 
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Appendix Cl 

intel 
2708 

8K (IK x8) UV ERASABLE PROM 
Max. Power Max. Access 

2708 800 mW 450ns 

2708L 425mW 450ns 

2708-1 800 mW 350 ns 

2708-6 800 mW 550ns 

■ Low Power Dissipation — 425 mW 
Max. (2708L) 

■ Fast Access Time — 350 ns Max. 

■ Data Inputs and Outputs TTL 
Compatible during both Read and 
Program Modes 

(2708-1) 
■ Static — No Clocks Required 

■ Three-State Outputs — OR-Tie 
Capability 

The Inter* 2708 is an 6192-bit ultraviolet light erasable and electrically reprogrammable EPROM, ideally suited where 
fast turnaround and pattern experimentation are important requirements. All data inputs and outputs are TTL com¬ 
patible during both the read and program modes. The outputs are three-state, allowing direct Interface with common 
system bus structures. 

The 2708L at 425mW is available for systems requiring lower power dissipation than from the 2708. A power dissipation 
savings of over 50% without any sacrifice in speed is obtained with the 2708L. The 2708L has high input noise Immunity 
and is specified at 10% power supply tolerance. A high-speed 2708-1 Is also available at 350ns for microprocessors 
requiring fast access times. 

The 2708 family is fabricated with the N-channel silicon gate FAMOS technology and Is available In a 24-pin dual In-line 
package. 

PIN CONFIGURATION BLOCK DIAGRAM 
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2708 FAMILY 

PROGRAMMING 
The programming specifications are described in the Data Catalog PROM/ROM Programming Instructions Section. 

Absolute Maximum Ratings* 
Temperature Under Bias. -25°C to +85*C 

Storage Temperature.-65* C to ♦125°C 

Vqd With Respect to VBB.. +20V to -0.3V 
Vqc and Vs$ With Respect to VBB. +15V to -0.3V 

All Input or Output Voltages With Respect 

_to VBB During Read... +15V to -0.3V 

5S/WE Input With Respect to VBB 
During Programming. +20Vto-0.3V 

Program Input With Respect to VBb. *35V to -0 3V 

•COMMENT 

Stresses above those luted under "Absolute Maximum 

Ratings" may cause permanent damage to the device. 

Thrs is a stress rating only and functional operation 

of the device at these or any other conditions above 

those indicated in the operational sections of this 
specification n not implied. Exposure to absolute 
max mum rating conditions for extended periods may 

affect device reliability. 

Power Dissipation 1.5W 

QC AND A.C. OPERATING CONDITIONS DURING READ 

2708 2708-1 2708-6 2708L 

Temperature Range 0*C-70*C 0*C-70*C 0*C-70*C 0*C-70*C 

Vcc Power Supply 5V ± 5% 5V±5% 5V±5% 5V ± 10% 

V00 Power Supply 12V ±5% 12V ±5% 12V ±5% 12V * 10% 

VBB Power Supply -5V ± 5% -5V±5% -5Vdt5% -5V*10% 

READ OPERATION 
D.C. AND OPERATING CHARACTERISTICS 

Symbol Paramatar 
2708.2708-1. 2708-6 Umlts 2708L Limits 

Units Teat Conditions 
Min. TypJ* Max. Min. Typjfl Max. 

•u Address and Chip Select Inpul SmK 

Current 

1 10 1 10 nA VIN . 5.25V or V,M - V1L 

H.0 Output Leakage Current 1 10 1 10 *A VouT-^iV. CS/WE-5V 

•ooPi Voo Supply Current 50 65 21 28 mA Worst Case Supply Currents*4* 

•ccw Vcc Supply Current 6 10 2 4 mA AM In pull High: 

•bb^ VBB Supply Current 30 45 10 14 mA CSWE = 5V; TA a0'C 

V.L Input Low Vonage Vjj 065 065 V 

V,M input High Voltage 3.0 Vcc*i 22 VCC*1 V i 

Vot Output Low Voltage 0.45 0.4 V 
lot - 1 6mA (2700. 2700-1. 270M) 

1oL « 2mA (2708L) 

V0H. Output High Voltage 3.7 3.7 V Ion - “lOO^A 

VOMJ Output Mign Volttg# 2.4 2.4 V •oh - -imA 

PO Power Dissipation 800 325 mW Ta-70*C 

425 mW Ta«0*C 

NOTES: 1. V8B must be applied prior to and V00 V„5 must also be the last powar supply switched off. 
2. Typical »a'u*s are for TA «2S*C end nominal supp y voltages. 
3. The totel power dissipation is not calculated by summing the various currents (Ipg, 1^. and l88) multiplied by their respective vet- 

tapes s nee current paths exist between the various powar supplies and The log. Igc. and iaa currants stoutd be used to deter¬ 
mine power supply cspaclty only. 

4. tBt for I he 27C0L Is specified In the programmed state and is 18mA maximum in the unprogrammed state. 

2708 FAMILY 

27081 

RANGE OF SUPPLY CURRENTS 

VS. TEMPERATURE 

I 

2708. 2708-1, AND 2708 6 

RANGE OF SUPPLY CURRENTS 

VS. TEMPERATURE 

9 

Mi ►XJiUC 0#t•ATiNG 
COW K»% 

vu *»nv 
f 

™~>WW - - * A. 
■ / i _ V„..*29V 

ura 

ACCESS TIME VS. TEMPERATURE 
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AX. CHARACTERISTICS 

Symbol Parameter 
2708. 2708L Limits 2708-1 Limits 2708-6 Limits 

Units 
Min. Max. Min. Max. Min. Max. 

lACC Address to Output Delay 450 350 550 ns 

tco Chip Select to Output Delay 120 120 160 ns 

*DF Chip Deselect to Output Float 0 120 0 120 0 160 ns 

Iqh Address to Output Hold 0 0 0 ns 

CAPACITANCE111 TA - 25°C. f - 1 MHz 

Symbol Parameter Typ. Max. Unit. Conditions 

C|N Input Capacitance 4 6 pF 

>
 

o
 

I z
 

>
 

Gout Output Capacitance 8 12 PF V0UT * ov 

NOTE: 1. TM» is penotfcally templed and t» not 100% tested 

A.C. TEST CONDITIONS: 

Output Load: 1 TTL gate and Ci. • 100 pF 
Input Rise and Fell Times: <20 ns 
Timing Measurement Reference Levels: 0.8V and 

2.8V for inputs; 0.8V and 2.4V for outputs. 
Input Pulse Levels: 0.65V to 3.0V 

AX. WAVEFORMS ,J> 

NOTES. 

2. ALL T«UfS SHOWN in parentheses ape m n viiju and ape NSEC 
UNLESS OTHERWISE SFtClFlED 

3. CS MAY BE OELAVEO UP TO lACC «CO AFTER ADDRESSES ARE VAL>0 
WITHOUT IMPACT ON lACC 

4. «o» IS 5PECIFIE0 FPCM CS OR AOOPESS CHANGE. WHICHEVER OCCURS 
first. 

ERASURE CHARACTERISTICS 

The erasure characteristics of the 2708 family are such that 
erasure begins to occur wtien exposed to light with wave¬ 
lengths shorter than approximately 4000 Angstroms (A). It 
should be noted that sunlight and certain types of fluores- 
cont lamps have wavelengths in the 3000-4000A range. 
Data show that constant exposure to room level fluores¬ 
cent lighting could erase the typical device in approxi¬ 
mately 3 years, while it would take approximately 1 week 
to cause erasure when exposed to direct sunlight. If the 
2708 is to be exposed to these types of limiting conditions 
for extended periods of time, opaque labels are available 
from Intel which should be placed over the 2708 window 
to prevent unintentional erasure. 

The recommended erasure procedure (see Data Catalog 
PROM/ROM Programming Instructions Section) for the 
2708 family is exposure to shortwave ultraviolet light 
which has a wavelength of 2537 Angstroms (A). The inte¬ 
grated dose (i.e., UV intensity X exposure time) for erasure 
should be a minimum of 15 Wsec/cm2 3 4. The erasure time 
with this dosage is approximately 15 to 20 minutes using an 
ultraviolet lamp with a 12000 nW/cm2 power rating. The 
device should be placed within 1 inch of the lamp tubes 
during erasure. Some lamps have a filter on their tubes 
which should be removed before erasure. 
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Appendix C2 

2716 
16K (2K x 8) UV ERASABLE PROM 

■ Pin Compatible to Intel® 2732 EPROM 

■ Simple Programming Requirements 
— Single Location Programming 
— Programs with One 50 ms Pulse 

■ inputs and Outputs TTL Compatible 
during Read and Program 

■ Completely Static 

The Intel' 2716 is a 16.384 bit ultraviolet erasable and electrically programmable read only memory (EPROM). The 2716 
operates from a single 5-volt power supply, has a static standby mode, and features fast single address location program¬ 

ming. It makes designing with EPROMs faster, easier and more economical 

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer high performance 

♦5V microprocessors such as Intel's 8085 and 8086. A selected 2716-5 and 2716-6 is available for slower speed applications. 

The 2716 is also the first EPROM with a static standby mode which reduces the power dissipation without increasing access 

time. The maximum active power dissipation is 525 mW while the maximum standby power dissipation is only 132 mW, a 

75% savings. 

The 2716 has the simplest and fastest method yet devised for programming EPROMs - single ou'se TTL level programming 

No need for high voltage pulsing because all programming controls are handled by TTL signals. Program any location at any 

time-either individually, sequentially or at random, vrth the 2716'* single address location programming. Total programming 
time for all 16.384 bits is only 100 seconds. 

■ Fast Access Time 
— 350 ns Max. 27161 
— 390 ns Max. 2716-2 
— 450 ns Max. 2716 
— 490 ns Max. 2716-5 
— 650 ns Max. 2716-6 

■ Single + 5V Power Supply 

■ Low Power Dissipation 
— 525 mW Max. Active Power 
— 132 mW Max. Standby Power 

PIN CONFIGURATION 

2716 2732* 

tRefer to 2732 

data sheet for 

specifications 

PIN NAMES 

l, 

G« CAjirut 

OjfHj IS 

MODE SELECTION 

tins 

Moot 

Oaom 

or 1241 mi 
vcc 

ti* 

OUTHJJt 

ft It. 13171 

vlt v* •» 

Ji**e>* V|N Do«‘iCif« •i 

hryr v,t IO V(H V|N •s Om 
Vf**S v.t vk> •» CojT 

*'09 va V.H •n •i 
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2716 

PROGRAMMING 
The programming specifications are described in the Data Catalog PROM/ROM Programming Instructions Section. 

Absolute Maximum Ratings* 
Temperature Under Bias..-10° C to♦80°C 
Storage Temperature  .-65° C to +125°C 
All Input or Output Voltages with 

Respect to Ground.+6V to -0.3V 
Vpp Supply Voltage with Respect 

to Ground During Program.♦26.5V to -0.3V 

•COMMENT: Stresses above thole listed under "Absolute Maxi¬ 
mum Rating*" may cause permanem damage to the device. This is a 
stress rating only and function*' operation of the device at these or 
any other conditions above those indicated in the operational sec¬ 
tions of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect device 
reliability. 

DC and AC Operating Conditions During Read 

2716 2716-1 2716-2 2716-5 2716-6 

Temperature Range 0°C - 70°C 0°C - 70°C JEMm O^C — 70° C 0°C - 70°C 

Vcc Power SupplyM-2) 5V±5% 5V ±10% 5 V ±5% 5 V ±5% 5V ±5% 

Vpp Power Supply^2) VCC Vcc Vcc Vcc Vcc 

READ OPERATION 

D.C. and Operating Characteristics 

Symbol Parameter 
Limits 

Unit Conditions 
Min. Typ.131 Max. 

’Ll Input Load Current 10 pA V,N - 5.25V 

ko Output Leakage Current 10 pA Vqut - 5.25V 

Ipft® Vpp Current 5 mA Vpp - 5.25V 

Icci121 Vcc Current (Standby) 10 25 mA CE- v,h.5£- V,l 

'CCJ121 Vcc Current (Active) 57 100 mA OT -CF- V,L 

V,L Input Low Voltage -0.1 0.8 V 

V |H Input High Voltage 2.0 Vcc+1 V 

VOL Output Low Voltage 0.45 V Iol * 2.1 mA 

Vqh Output High Voltage 2.4 V •oh “ -400 pA 

NOTES: 1. Vcc must be aoplied simultaneously or before Vpp and removed simultaneously or after Vpp. 

2. Vpp mey be connected directly to Vcc exceot during programming. The supply current would then be the sum of Ice •PPI- 

3. Typical values are for TA • 25'C and nominal supply voltages. 

4. This parameter is only sampled end «$ not 100% tested. 

Typical Characteristics 

ICC CURRENT 
Via 

0 >! K K 40 W to >0 $0 
TfMMAATvAt I Cl 

ACCESS TIME 
vs. 

CAPACITANCE 

0 *00 M )» 400 *» «• too 

Cl if#» 

ACCESS TIME 
Vie 

TEMPERATURE 

m 

3- 

m 

vx 

i 
0 >*203040*010**0 

Vt%»t*Alvflt I C» 
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2716 

A.C. Characteristics 

Svmboi Parameter 

Limits (ns) 

Ta*t 
Conditions 

2716 

Min. Max. 

2715-1 

Min. Max. 

2716-2 

Mm. Max. 

2716-5 

1 Min. Max. 

2716-6 

Min. Max. 

*ACC Address to Output C* ay 450 i 390 450 450 ce«oT-vil 

tCE CE to Output Delay 450 350 390 490 650 0?-V,t 

t0E Output Enab'e to Output Oelay 120 120 120 160 200 CE-Vil 

'OF Output Enable H*gh to Output Float 0 100 0 100 0 100 0 100 0 UX) «-v,t 

‘oh Output Hold from Addresses. CE or 

ST Whichever Occurred First 
0 0 0 0 0 £T-CT-v,L 

Capacitance 141 TA - 25°C. f - 1 MHz 

Symbol Parameter Typ. Max. Unit Conditions 

C|N Input Capacitance 4 6 pF VW * OV 

CquT Output Capacitance 8 12 PF Vqut * OV 

A.C. Test Conditions: 

Output Load: 1 TTl gate and CL * 100 pF 

Input Rise and Fall Times: <20 ns 

Input Pulse Levels: 0.8V to 2.2V 

Timing Measurement Reference Level: 

Inputs IV and 2V 

Outputs 0.8V and 2V 

A. C. Waveforms Ml 

NOTE 1. Vcc must P* apoiied simultaneously or before Vpp and removed simultaneously Oi after Vpp. 

2. Vpp may be connected directly to Vqc except during programming. The Supply current would then bt the sum of Ice «nd Ippi. 

3. Typvcal values are for TA - 25* C and nominal supply voltages. 
4. This parameter it only aamplad and la not 100% tested. 

5. OE may C« delayed up to tAcc - 'OE eher tn* 0f CE without impact on tAcc- 
6. tpp Is specified from OE or CE. whichever occur* first. 
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2716 

ERASURE CHARACTERISTICS OUTPUT OR-TIEING 

The erasure characteristics of the 2716 are such that erasure 

begins to occur when exposed to light with wavelengths 
shorter than approximately 4000 Angstroms (A). It should 

be noted that sunlight and certain types of fluorescent 
lamps have wavelengths in the 3000-4000A range. Data 
show that constant exposure to room level fluorescent 

lighting could erase the typical 2716 in approximately 3 
years, while it would take approximatley 1 week to cause 

erasure when exposed to direct sunlight. If the 2716 is to 

be exposed to these types of lighting conditions for ex¬ 

tended periods of time, opaque labels are available from 
Intel which should be placed over the 2716 window to 

prevent unintentional erasure. 

The recommended erasure procedure (see Data Catalog 
PROM/ROM Programming Instruction Section) for the 
2716 is exposure to shortwave ultraviolet light which has 
a wavelength of 2537 Angstroms (A). The integrated dose 

(i.e.. UV intensity X exposure time) for erasure should be 
a minimum of 15 W-sec/cm2. The erasure time with this 

dosage is approximately 15 to 20 minutes using an ultra¬ 
violet lamp with a 12000 pW/cm2 power rating. The 2716 

should be placed within 1 inch of the lamp tubes during 

erasure. Some lamps have a filter on their tubes which 

should be removed before erasure. 

DEVICE OPERATION 

The five modesof operation of the 2716 are listed in Table 

I. It should be noted that all inputs for thefive modesare at 
TTt levels. The power supplies required are a +5V V^c and 
a Vpp. The Vpp power supply must be at 25V during the 

three programming modes, and must be at 5V in the other 
two modes. 

TABlf I MOO€ S€ LECTION 

rmt 

Moot 

CC.tCM 

am 
61 

CK1 
vto 
(111 

vcc 
1*41 

OUTtUTft 
itit.ui n 

VH •ft •4 Coot 
VIH &»• iC*f •S •4 **** 
V|C»V|H *|N •6 Oi* 

troy** V»<«V VlL vit •ft °Cmi 

VlL VfH •n •ft * rt 

READ MODE 

The 2716 has two control functions, both of which must be 
logically satisfied in order to obtain data at the outputs. 

Chip Enable (CE) is the power control and should be used 
for device selection. Output Enable (OE) is the output 
control and should be used to gate data to the output 

pins, independent of device selection. Assuming that 
addresses are stable, address access time (tAccI »* equal to 
the delay from Cl to output (tee). Data is availablejt 
the outputs 120_ns (toe) ah®' th® falling edge of OE. 
assuming that CE has been low and addresses have been 

stable for at least tACC — *OE* 

STANDBY MODE 

The 2716 has a standby mode which reduces the active 
power dissipation by 75%. from 525 mW to 132 mW. The 

2716 is placed in the standby mode by applying a TTL high 

signal to the CE input. When in standby mode, the outputs 
are in a high impedence state, independent of the OE input. 

Because 2716*s are usually used in larger memory arrays. 

Intel has provided a 2 line control function that accomo¬ 

dates this use of multiple memory connections. The two 

line control function allows for: 

a) the lowest possible memory power dissipation, and 

b) complete assurance that output bus contention will 

not occur. 

To most efficiently use these two control lines, it is recom¬ 

mended that Cl (pin 18) be decoded and used as the 

primary device selecting function, while 51 (pin 20) be 

made a common connection to all devices in the array and 

connected to the READ line from the system control bus. 

This assures that all deselected memory devices are in their 

low power standby mode and that the output pins are only 

active when data is desired from a particular memory 

device. 

PROGRAMMING 

Initially, and after each erasure, all bits of the 2716 are in 

the "1" state. Data is introduced by selectively program¬ 
ming "0's" into the desired bit locations. Although only 

"0V will be programmed, both "IV and "0V can be 
presented in the data word. The only way to change a "0" 
to a "1" is by ultraviolet light erasure. 

The 2716 is in the programming mode when the Vpp power 

supply is at 25V and OE is at V|H. The data to be pro¬ 
grammed is applied 8 bits in parallel to the data output 

pins. The levels required for the address and data inputs are 
TTL. 

When the address and data are stable, a 50^msec, actrve 

high, TTL program pulse is applied to the CE/PGM input. 
A program pulse must be applied at each address location 
to be programmed. You can program any location at any 
time — either individually, sequentially, or at random. 

The program pulse has a maximum width of 55 msec. The 
2716 must not be programmed with a DC signal applied to 
the CE/PGM input. 

Programming of multiple 2716s in parallel with the same 

data can be easily accomplished due to the simplicity of 
the programming requirements. Like inputs of the paral¬ 

leled 2716s may be connected together when they are pro¬ 

grammed with the same data. A high level TTL pulse 

applied to the CF/PGM input programs the paralleled 
2716s. 

PROGRAM INHIBIT 

Programming of multiple 2716s in parallel with different 
data is also easily accomplished. Except for Cl/PGM, all 
like inputs (including OE) of the parallel 2716s may be 
common. A TTL level program poise applied to a 2716's 
CE/PGM input with Vpp at 25V will program that 2716. 
A low level CE/PGM input inhibits the other 2716 from 
being programmed. 

PROGRAM VERIFY 

A verify should be performed on the programmed bits to 

determine that they were correctly programmed. The verify 

may be performed wth Vpp at 25V, Except during pro¬ 
gramming and program verify. Vpp must be at 5V. 
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Appendix C3 

iny* 
2102A, 2102AL/8102A-4* 
IK x 1 BIT STATIC RAM 

P/N 
Standby Pwr. 

(mW) 
Operating Pwr. 

(mW) 
Access 

(ns) 
2102AL-4 35 174 450 
2102AL 35 174 350 
2102AL-2 42 342 250 
2102A-2 — 342 250 
2102A — 289 350 
2102A-4 289 450 

■ Single ->-5 Volts Supply Voltage 
■ Directly TTL Compatible: All 

Inputs and Output 
■ Standby Power Mode (2102AL) 
■ Three-State Output: OR-Tie 

Capability 

■ Inputs Protected: All Inputs 
Have Protection Against Static 
Charge 

■ Low Cost Packaging: 16 Pin 
Dual-In-Line Configuration 

The Intel® 2102A is a high speed 1024 word by one bit static random access memory element using N-channel MOS devices 
integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to 
operate. The data is read out nondestructively and has the same polarity as the input data. 

The 2102A is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are 
important design objectives. A low standby power version (2102AL) is also available. It has all the same operating 
characteristics ol the 2102A with the added feature of 35m Wmaximum power dissipation in standby and 174m Win operations. 

It is directly TTL compatible in all respects: Inputs, output, and a single >5 volt supply. A separate chip enable (CE) lead allows 
easy selection of an individual package when outputs are OR-tied. 

The Intel® 2102A is fabricated with N-channel silicon gate technology. This technology allows the design and production of 
high performance easy to use MOS circuits and provides a higher functional density on a monolithic chip than either 
conventional MOS technology or P-channel silicon gate technology. 

PIN 
CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM 

*. c -'u — *9 
PIN NAMES 

Ai c 2 15 3 S - OATA 

*/Y* C a 14 3S “ A**, AOOfttSS iwnits 

<hC 4 13 d n — *4 R£AO.*RlT£ IH*JT 

a,C 5 12 I) DATA OUT Ai 
A4 

CHIMNA8U 

a,C 0 11 g OATA IN _ 
*7 °OUT — ®OVT OATA OUTPUT 

*. r 
#*•< 

7 10 3 Vcc - A# 
Aa vec POffCR ••tvi 

*9 C 8 9 J GVO C£ 
1 

TT 
TRUTH TABLE 

cl ft*r _^OUT Moot 

H X X HIGH 2 NOTSECCCTIO 

L L L L WRIT! -cr 

L L H H WRlTC T 

l H X Rf AO 

•All 8102A-4 ^pacification* ara Identical to th« 2102A-4 apeciilcallona. 

Reprinted by permission of Intel Corporation Copyright © 1978 

APPENDIX C 243 

Copyrighted material 



2102A FAMILY 

Absolute Maximum Ratings* 
Ambient Temperature Under Bias -10°C to 80°C 

Storage Temperature -65°C to +150°C 

Voltage On Any Pin 
With Respect To Ground -0.5V to +7V 

Power Dissipation 1 Watt 

•COMMENT: 

Stresses above those listed under "Absolute Maximum Rating" 
may cause permanent damage to the device. This is a stress 
rating only and functional operation of the device at these or 
at any other condition above those indicated in the opera* 
tional sections of this specification is not implied. Exposure to 
absolute maximum rating conditions for extended periods may 
affect device reliability. 

D. C. and Operating Characteristics 
Ta ■ 0°C to 70° C, Vcc ■ 5V £5% unless otherwise specified. 

Symbol Ptnmettr 

2102A, 2102A-4 

2102AL. 2102AL4 

Limits 

Min. Typ.W Max. 

2102A-2.2102AL-2 

Limits 

Min. Typ.ni Max. Unit Test Conditions 

‘u Input Load Current 1 10 1 10 VA VIN - 0 to 5.25V 

fLOH Output Leakage Current 1 5 1 5 UA £E • 2.0V. 

vOVT * v0H 

•lol Output Leakage Current -1 -10 -1 -10 UA £5 • 2.0V, 

V0UT " 0.4V 

•cc Power Supply Current 33 Note 2 45 65 mA All Inputs* 5.25V. 

Oata Out Open. 

Ta * 0°C 

V.L Input Low Voltage -0.5 0.8 -0.5 0.8 V 

V|H Input High Voltage 2.0 Vcc 2.0 Vcc V 

V0L Output Low Voltage 0.4 0.4 V •OL * 2.1mA 

Vqh Output High Voltage 2.4 2.4 V •oh ■ -100pA 

Notts 1. Typical values art for Ta • 25°C and nominal supply voltage. 

2. Tht maximum l^c value •* 55mA for the 2102A and 2102A-4. and 33mA for the 2102AL and 2102AL-4. 

Standby Characteristics 2102AL. 2102AL 2, and 2102AL-4 (Available only in the Plastic Package) 
Ta - 0°C to 70°C 

Symbol Parameter 

2102AL. 2102AL-4 

Limits 

Min. Typ.W Max. 

2102AL-2 

Limits 

Min. Typ.Hl Max. Unit Test Conditions 

Vpo Vcc 'n Standby 1.5 1.5 V 

VCES121 CE Bias in Standby 2.0 2.0 V 2.0V<VPO<VccMax. 

Vpo Vpo V 1.5V<VP0< 2.0V 

•poi Standby Current 15 23 20 28 mA All Inputs* VP01» 1.5V 

!PD2 Standby Current 20 30 25 38 mA All Inputs* Vp02* 2.0V 

tCP Chip Deselect to Standby Time 0 0 ns 

tRl3I Standby Recovery Timt tRC tRC ns 

STANDBY WAVEFORMS 

NOTES. 

1. Typical valuti are for TA ■ 25° C. 

2. Consider tnt ten conditions at shown: If tht stand- 

by voltage IVp^l .» between 5.25V IVcc Max.) and 
2 0V. then CE mutt be h«id at 2.0V Mm. (V!HI. >» 
tht ttandby voltage *s its* than 2 0V but grtattr than 
1.5V iVpQ Min.), than £1 and standby voltage 

mutt be at lean the tame value or. if they are dif• 

ftrent. Cl mutt be th* more positive of the two. 

3 tR ■ irC«REAO CYCLE TIME). 
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2102A FAMILY 

A. C. Characteristics Ta * 0°C to 70°C, vcc = 5V ±5% unless otherwise specified 

REAO CYCLE 

Symbol Parameter 

2102A-2, 2102AL-2 

Limits (ns) 
Min. Max. 

2102A, 2102AL 

Limits (ns) 
Min. Max. 

2102A-4,2102AL-4 

Limits (ns) 
Min. Max. 

tRC Read Cycle 250 350 450 

tA Access Time 250 350 450 

too Chip Enable to Output Time 130 180 230 

tom Previous Read Data Valid with 

Respect to Address 

40 40 40 

tOH2 Previous Read Data Valid with 

Respect to Chip Enable 

0 0 0 

WRITE CYCLE 

twe Write Cycle 250 350 450 

tAW Address to Write Setup Time 20 20 20 

twp Write Pulse Width 180 250 300 

tWR Write Recovery Time 0 0 0 

*DW Data Setup Time 180 250 300 

<DH Data Hold Time 0 0 0 

*cw Chip Enable to Write Setup 

Time 
180 250 300 

A.C. CONDITIONS OF TEST 

Input Puli* L»v#l»: 0.8 Volt to 2.0 Volt 

Input Rite end Fell Times: lOnsec 

Timing Measurement Inputs: 1.5 Volts 

Reference Levels Output: 0.8 and 2.0 Volts 

Output Load: 1 TIL Gate and Cl • 100 pF 

Capacitance121 ta -25°c, f*iMHz 

SYMBOL TEST 
LIMITS (pF) | 

TYP.ll) MAX. 

CIN INPUT CAPACITANCE 

(ALL INPUT PINS) VIN»0V 
3 5 

COUT OUTPUT CAPACITANCE 

Vqut - 0V 
7 10 

Waveforms 

READ CYCLE WRITE CYCLE 

S o a volts 

NOTES: 1. Typical values are for TA - 25*C and nominal supply voltage. 

2. This parameter is period Kelly sampled and is not 100% tested. 
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2102A FAMILY 

Typical D. C. and A. C. Characteristics 
POWER SUPPLY CURRENT VS. 

AMBIENT TEMPERATURE 
POWER SUPPLY CURRENT VS. 

1 2 3 4 5 6 

IVOLTSI 

V,N LIMITS VS. TEMPERATURE 

0 tO 20 30 40 50 40 70 

T4 <*C) 

OUTPUT SINK CURRENT VS. 

OUTPUT VOLTAGE 

ACCESS TIME VS. 

AMBIENT TEMPERATURE 

ACCESS TIME VS. 

LOAD CAPACITANCE 

10 20 30 40 

\rc> 

so 60 70 
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Appendix C4 

iny 
2114A 

1024 X 4 BIT STATIC RAM 

2114AL-1 2114AL-2 2114AL-3 2114AL-4 2114A-4 2114A-5 

Max. Access Time (ns) 100 120 150 200 200 250 

Max. Current (mA) 40 40 40 40 70 70 

■ HMOS Technology 

■ Low Power, High Speed 

■ Identical Cycle and Access Times 

■ Single +5V Supply ±10% 

■ High Density 18 Pin Package 

■ Completely Static Memory - No Clock 
or Timing Strobe Required 

■ Directly TTL Compatible: All Inputs 
and Outputs 

■ Common Data Input and Output Using 
Three-State Outputs 

■ 2114 Upgrade 

The Intel* 2114A is a 4098-bit static Random Access Memory organized as 1024 words by 4-bits using HMOS. a high per¬ 
formance MOS technology. It uses fully DC stable (static) circuitry throughout. In both the array and the decoding, therefore It 
requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The 
data is read out nondestructive^ and has the same polarity as the input data. Common input/output pins are provided. 

The2114A is designed for memory applications where the high performance and high reliability of HMOS. low cost, large bit 
storage, and simple interfacing arc important design objectives. The 2114A is placed in an 18-pin package for the highest 
possible density. 

It Is directly TTL compatible In all respects: Inputs, outputs, and a single «SV supply. A separate Chip Select (£S) lead allows 
easy selection of an individual package when outputs are or-tled. 

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM 

PIN NAMES 

A.-A, ADDRESS INPUTS Vcc POWER |*5V) 

WE WRITE ENABLE GNOGROUNO 

£3 CHIP SELECT 

l/0,-l/04 DATA INPUT ^OUTPUT 

ROW 
SftfCT 

• 
M€MORTARRAY 

• U ROWS 
*4 COLUMNS 

• 

> i _1_1_ 

r*#ur 
OATA 

CONTROL 

COLUMN i/O CIRCUITS 

COLUMN $4tier 

GNO 

O *\N MUMtCRS 

Reprinted by permission of Intel Corporation Copyright © 1980 
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2114A FAMILY 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias.-10°C to 80° C 
Storage Temperature.-S5*C to 150®C 
Voltage on any Pin 

With Respect to Ground.-3.5V to +7V 
Power Dissipation.1.0W 
D.C. Output Current.5mA 

COMMENT: Stresses above those listed under *Absolute 
Maximum Ratings" may cause permanent damage to the device. 
This Is a stress rating only and functional operation of the device 
at these or any other conditions above those Indicated In the 
operational sections of this specification is not Implied. Ex¬ 
posure is not Implied. Exposure to absolute maximum rating 
conditions lor extended periods may affect device reliability. 

D.C. AND OPERATING CHARACTERISTICS 
Ta * 0*C to 70®C, Vex = 5V ± 10%. unless otherwise noted. 

SYMBOL PARAMETER 

2114AL-1/L-2/L-3/L-4 

Min. Typ.nl Max. 

2114A-4/-5 

Min. Typ.lil Max. UNIT CONDITIONS 

Ili Input Load Current 
(All Input Pins) 

10 10 pA V,N • 0 to 5.5V 

&LOl I/O Leakage Current 10 10 pA c3« V,M 

V|/0 * GND to VCC 

•cc Power Supply Current 25 40 50 70 mA Vcc * max, l|/o ■ 0 mA, 

Ta - 0°C 

VlL Input Low Voltage -3.0 0.8 -3.0 0.8 V 

V|H Input High Voltage 2.0 6.0 2.0 6.0 V 

>OL Output Low Current 21 9.0 2.1 9.0 mA V0L - 0.4V 

•oh Output High Current -1.0 -2.5 -1.0 -2.5 mA Vqh " 2.4V 

*0S«2I 
Output Short Circuit 
Current 

40 40 mA 

NOTE: 1. Typical value*are for T^ • 2S*Car>d Vqc * 5.0V. 
2. Duration not to excaed 30 aeconds. 

CAPACITANCE 
Ta ■ 25* C, f - 1.0 MHz 

SYMBOL TEST MAX UNIT CONDITIONS 

cl/0 Input/Output Capacitance 5 pF V„o - ov 

C|N Input Capacitance 5 PF V,N " OV 

NOTE: Thit paramatar it periodically ampled and not 100% testod. 

A.C. CONDITIONS OF TEST 

Input Pulse Levels. 

Input Rise and Fall Times. 

Input and Output Timing Levels .... 

Output Load. 

.0.8 Volt to 2.0 Volt 

. 10 nsec 

.1.5 Volts 

1 TTL Gate and CL * 100 pF 
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2114A FAMILY 

A.C. CHARACTERISTICS Ta ■ 0*C to 70°C, Vcc “ 5V ♦ 10%. unless otherwise noted. 

READ CYCLE111 

SYMBOL PARAMETER 

2114AL-1 

Min. Max. 

2114AL-2 

Min. Max. 

2114AL-3 

Min. Max. 

2114A-4/L-4 

Min. Max. 

2114A-5 

Min. Max. UNIT 

tec Read Cycle Time 100 120 150 200 250 ns 

U Access Time 100 120 150 200 250 ns 

tco Chip Selection to Output Valid 70 70 70 70 85 ns 

tea Chip Selection to Output Active 10 10 10 10 10 ns 

tOTO Output 3-state from Deselection 30 35 40 50 60 ns 

tOMA 
Output Hold from 
Address Change 15 15 15 15 15 ns 

WRITE CYCLE (21 

2114AL-1 2114AL-2 2114AL-3 2114A-4/L-4 2114A-5 

SYMBOL PARAMETER Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. UNIT 

twe Write Cycle Time too 120 150 200 250 ns 

tw Write Time 75 75 90 120 135 ns 

twR Write Release Time 0 0 0 0 0 ns 

tOTW Output 3-state from Write 30 35 40 50 60 ns 

tpw Data to Write Time Overlap 70 70 90 120 135 ns 

ton Data Hold from Write Time 0 0 0 0 0 ns 

NOTES _ _ 
1. A Raad occur* dunng th« overlap of • lowjCS and a high WE 
2 A Write occurs during tr>* ov*rl*p o< a low CS and a low WE it m#*sur#«J from |h# Utter o! C5 Or 771 go*ng low to the aarliar ot CS Of 771 going high. 

WAVEFORMS 

READ CYCLE® WRITE CYCLE 

* - 

T- U ] 

AOORCtS 

a vWWWWWWWWWSv_ 
U. ko—U— k*o—H 
r*—k»—H 

•-B-dr- 
NOTES: 

3. 7HT u high *or * Read Cycle. 
4. It the Cs low transition occurs slcroltaneously with the wl low 

^transition, the output t>uff*rs remain in a high >mp«dance state. 
5. wT must do high dunng an address tramitons. 

ao cat is 

t 
Pout ^3 SB 

_1 
/ J y f f T' J T7'7 7 ) Tf 

11! ill / / J1 lli 

BssaBB 
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Appendix C5 

intel 
8212 

8-BIT INPUT/OUTPUT PORT 

■ Fully Parallel 8-Bit Data Registerand Buffer ■ 3.65V Output High Voltage for 
■ Service Request Flip-Flop for Direct Interface to 8008, 8080A, or 

Interrupt Generation 8085A CPU 

■ Low Input Load Current - .25mA Max. ■ Asynchronous Register Clear 
■ Three State Outputs ■ Replaces Butlers, Latches and 
■ Outputs Sink 15mA Multiplexers in Microcomputer Systems 

■ Reduces System Package Count 

The 8212 input/output port consists of an 8-bit latch with 3-state output buffers along with control and device selection 
logic. Also included is a service request flip-flop for the generation and control of interrupts to the microprocessor. 

The device is multimode in nature. It can be used to implement latches, gated buffers or multiplexers. Thus, all of the 
principal peripheral and input/output functions of a microcomputer system can be implemented with this device. 

PIN CONFIGURATION LOGIC DIAGRAM 

Reprinted by permission of Intel Corporation Copyright © 1980 
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8212 

FUNCTIONAL DESCRIPTION 

Data Latch 
The 8 flip-flops that make up the data latch are of a "D" 
type design. The output (Oi of the flip-flop will follow the 
data input (Dl while the clock input (Cl is high. Latching 
will occur when the clock (C) returns low. 

The latched data is cleared by an asynchronous reset 
Input (CLR). (Note: Clock (C) Overrides Reset (CLR). I 

Output Buffer 
The outputs of the data latch |Q) are connected to3-stato, 
non-inverting output buffers. These buffers have a 
common control line (EN); this control line either enables 
the buffer to transmit the data from the outputs of the data 
latch (Q) or disables the buffer, forcing the output into a 
high impedance state. (3-statel 

The high-impedance state allows the designer to connect 
the 8212 directly onto the microprocessor bi-directional 
data bus. 

Control Logic 
The 8212 has control inputs DS1. OS2. MD and STB. 
These inputs are used to control dovice selection, data 
latching, output buffer state and service request flip-flop. 

DS1, DS2 (Device Select) 
These 2 inputs are used for device selection. When DS1 is 
low and DS2 is high (OS1 * DS2) the device is selected. In 
the selected state the output buffer is enabled and the 
service request flip-flop iSR) is asynchronously set. 

MD (Mode) 
This input is used to control the state of the output buffer 
and to determine the source of the clock input (C) to the 
data latch. 

When MD is high (output mode) the output buffers are 
enabled and the source of dock (jC) to the data latch is 
from the device selection logic <5sl * DS2). 

When MD is low (Input model the output buffer state is 
determined by the device selection logic (DS1 • DS2) and 
the source of clock (C) to the data latch is the STB 
(Strobe) input. 

STB (Strobe) 
This input is used as the clock (C) to the data latch for the 
Input mode MD » 0) and to synchronously reset the 
service request flip-flop (SR). 

Note that the SR flip-flop is negative edge triggered. 

Service Request Flip-Flop 
The (SR> flip-flop is used to generate and control 
interrupts in microcomputer systems. It is asynchron¬ 
ously set by the CLR input (active low). When the (SR) flip- 
flop is set it is in the non-interrupting state. 

The output of the (SR» flip-flop (Q) Is connected to an 
inverting input of a "NOR" gate. The other input to tho 
"NOR" gate is non-inverting and is connected to the 
device seiectionjogic (DS1 • DS2). The output of the 
"NOR" gate (INT) is active low (interrupting state) for 
connection to active low input priority generating circuits. 

SCRVICl RtOUtST ft 

; sum* 

UVSSft 
l*OIM«CTO*OUtfVTSU##l*l 

8212 

Applications of the 8212 — For 
Microcomputer Systems 
I Basic Schematic Symbol 
II Gated Buffer 
III Bi-Directional Bus Driver 
IV Interrupting Input Port 

1. Basic Schematic Symbols 

Two examples of ways to draw the 8212 on system 
schematics — (1 > the top being the detailed view showing 
pin numbers, and (2) the bottom being the symbolic view 

V Interrupt Instruction Port 
VI Output Port 
VII 8080A Status Latch 
VIII 80S5A Address Latch 

showing the system input or output as a system bus (bus 
containing 8 parallel lines). The output to the data bus is 
symbolic in referencing 8 parallel lines. 
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BASIC SCHEMATIC SYMBOLS 

INnjT DEVICE OUTPUT DEVICE 

(DETAILED) 

iswaonci 

II. Gated Buffer (3-State) GATED BUFFER 

The simplest use of the 8212 is that of a gated buffer. By 
tying the mode signal low and the strobe Input high, the 
data latch is acting as a straight through gate. The output 
buffers are then enablod from the device selection logic 
OS1 and DS2. 

When the device selection logic is false, the outputs are 3- 
state. 

When the device selection logic is true, the input data from 
the system is directly transferred to the output. The input 
data load is 250 micro amps. The output data can sink 15 
milli amps. The minimum high output is 3.65 volts. 

output 
DATA 
(15mA) 
(3 65V MIN) 

8212 

III. BI-DIrectlonal Bus Driver BI-DIRECTIONAL BUS DRIVER 

A pair of 8212's wired (back-to-back) can be used as a 
symmetrical drive, bi-directional bus driver. The devices 
are controlled by the data bus input control which is 
connected to 6£i on the first 8212 and to DS2 on the 
second. One device is active, and acting as a straight 
through buffer the other is In 3-state modo. This is a very 
useful circuit in small system design. 

vce 

OATA 
8 US 
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IV. Interrupting Input Port INTERRUPTING INPUT PORT 

This use of an 8212 is that of a system Input port that 
accepts a strobe from the system input source, which in 
turn clears the service request flip-flop and interrupts the 
processor. The processor then goes through a service 
routine. Identifies the port, and causes the device 
selection logic to go true — enabling the system input data 
onto the data bus. 

DATA 

TO PRIORITY CAT 
I ACTIVE LOW 

TO CPU 
INTERRUPT INPUT 

V. Interrupt Instruction Pori 

The 8212 can be used to gate the interrupt Instruction, 
normally RESTART instructions, onto the data bus. The 
device is enabled from the interrupt acknowledge signal 
from tho microprocessor and from a port selection signal. 
This signal is normally tied to ground. (DS1 could be used 
to multiplex a variety ot interrupt instruction ports onto a 
common bus). 

INTERRUPT INSTRUCTION PORT 

VCC DATA 

8212 

VI. Output Port (With Hand-Shaking) OUTPUT PORT (WITH HAND-SHAKING) 

The 8212 can be used to transmit data from the data bus to 
a system output The output strobe could be a hand¬ 
shaking signs! such as 'reception of data" from the device 
that the system is outputting to. It in turn, can interrupt the 
system signifying the reception of data. The selection of 
the port comes from the device selection togic.iDSl • DS2i 

DATA 
BUS 

SYSTEM 
INTI RRUPT 

OUTPUT STROBE 

SYSTEM OUTPUT 

SYSTEM RESET 

1 PORT SELECTION 
f- (LATCH CONTROL) 

J idSvOW) 
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VII. 6080A Status Latch 

Here the 8212 is used as the status latch for an 8080A 
microcomputer system. The input to the 8212 latch is 
directly from the 8080A data bus. Timing shows that when 
the SYNC signal is true, which is connected to the DS2 
input and the phase 1 signal is true, which is a TTL level 
coming from the clock generator; then, the status data will 
be latched into the 8212 

Note: The mode signal is tied high so that the output on the 
latch is active and enabled all the time. 

It is shown that the two areas of concern are the bi¬ 
directional data bus of the microprocessor and the control 
bus. 

°o 
D, 
O, 
0, 
D« 

O* 
0, 

DATA BUS 

v 

INTA 

WO 
STACK j 
HIT A 

OUT 
Ml 

INP 
MEMR 

01 

BASIC 
CONTROL 
BUS 

o2 

SYNC 

OBIS 

PATA 

STATUS 

8212 

VIII. 8085A Low-Order Address Latch 

The 8085A microprocessor uses a multiplexed address/ 
data bus that contains me low order 8-bits of address 
Information during the first part of a machine cycle The 
same bus contains data at a lator time in the cycle An 
address latch enable (ALE) signal is provided by the 
8085A to be used by the 8212 to latch the address so that it 
may be available through the whole machine cycle Note; 
In this configuration, the MODE input is tied high, keeping 
the 8212 s output buffers turned on at all times. 

Do 
D, 
02 
d3 
d4 
d5 
06 
07 

Ao 
Ai 
a2 
A3 
A4 
A* 
A6 
a7 

h DATA BUS 

LOW ORDER 
AODRESSBUS 
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ABSOLUTE MAXIMUM RATINGS 

Temperature Undor Bias Plastic . 0*C to *70*C 
Storage Temperature . -65°C to +160°C 
All Output or Supply Voltages . -0 5 to +7 Volts 
All Input Voltages . -1.0 to 5.5 Volts 
Output Currents . 100mA 

•comment 

Svcsses abovf new luted under "Absolute Maumum Ribngi* may c ause 
damage to the device TtU$ u a stress rating only and Junction*! 

operation o! the device at ihese or any otner conations above those 
indicated m me operational sections or IMS specification .» not implied 
E*posure to absolute ma*imum rating conditions lor emended periods 
may attect device reliability 

D.C. CHARACTERISTICS Ta - o*c to +75*c. Vcc - +sv ±5% 

Symbol 
Limits 

Unit Tpel CnnHillnnt rflrimtltr 
Min. Typ. Max. 

unit 1 hi Lonaiiioni 

If Input Load Current. ACK. DS2. CR. 
DI1-DI9 Inputs -.25 mA Vf = 45V 

If Input Load Current MD Input -.75 mA Vf • .45V 

If Input Load Current OSi Input -1.0 mA Vf = 45V 

Ir Input Leakage Current. ACK. OS. CR. 
Dlt-DIa Inputs 10 ma Vr < Vcc 

Ir Input Leakage Current MO Input 30 mA Vr £ Vcc 

Ir Input Leakage Current OSi Input 40 mA Vr < Vcc 

Vc Input Forward Voltage Clamp -1 V lc = -5mA 

VlL Input “Low" Voltage .85 V 

VlH Input "High" Voltage 2.0 V 

VOL Output "Low" Voltage .45 V lot = 15mA 

Vom Output "High" Voltage 3 65 4.0 V low » -1mA 

isc Short Circuit Output Current -15 -75 mA Vo = 0V. Vcc - 5V 

noi Output Leakage Current High 
Impedance State 20 uA Vo = 45V/5.25V 

Icc Power Supply Current 
90 

130 mA 

8212 

TYPICAL CHARACTERISTICS 
INPUT CURRENT VS. INPUT VOLTAGE OUTPUT CURRENT VS. OUTPUT -LOW* VOLTAGE 

OUTPUT CURRENT VS. 
OUTPUT "HIGH" VOLTAGE 

OATA TO OUTPUT DELAY 
VS. LOAO CAPACITANCE 
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DATA TO OUTPUT OELAY 
VS. TEMPERATURE 

TtWPfftATlM((C> 

WRITE ENABLE TO OUTPUT DELAY 
VS. TEMPERATURE 

8212 

A.C. CHARACTERISTICS Ta = o°C to +70*C. Vcc = +5V ± 5% 

Symbol Parameter 
Limit# 

Unit Test Conditions 
Min. Typ. Max. 

tpw Pulse Width 30 ns 

tPD Data to Output Dolay 30 ns Note 1 

twE Write Enable to Output Delay 40 ns Note 1 

tSET Data Set Up Time 15 ns 

tM Data Hold Time 20 ns 

tn Reset to Output Delay 40 ns Note 1 

ts Set to Output Delay 30 ns Note 1 

t£ Output Enable/Disable Time 45 ns Note 1 

tc Clear to Output Delay 55 ns Note 1 

CAPACITANCE* F » 1MHz. V&as b 2.5V. Vcc - +5V. Ta = 25eC 

Symbol Te«t 
Limit* 

Typ. Max. 

C.N DSt MD Input Capacitance 9pF l2pF 

ClN DS2. CK. ACK. Dli-DIa 
Input Capacitance 5pF 9pF 

COUT DOi-DOa Output Capacitance 8pF 12pF 

•This parameter (a sampled and not 1C0% lostcd. 

SWITCHING CHARACTERISTICS 
Condition* ot Teat 

Input Pulse Amplitude » 2.5V 
Input Rise and Fall Times 5ns 
Between IV and 2V Measurements made at 1.5V 
with 15mA and 30pF Test Load 

Note 1: 

T#*» Cl* *1 *2 

tPD. twE. In. ts. tc 30pF 30on 600n 

tE. ENABLE1 30 pF 10KH iKn 

IE. ENABLE l 30pF 3oon soon 

t£. DISABLE? 5pF 3oon eoon 

te. DISABLE! 5pF iOKn iKn 

•Includes probe and jig capacitance. 

Test Load 
15mA & 30pF 

•INCLUDING JIG & PROBE CAPACITANCE 
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Appendix C6 

STANDARD MICROSYSTEMS 
CORPORATION^ 

,. U|OjS&V3 Kxjcobuj? ** 
TW* 5*0 2& 9H9 

we keep ahead of our competition so you can keep ahead of yours 

KR2376-XX 

Keyboard Encoder Read Only Memory 
FEATURES 

□ Outputs directly compatible with TTLyDTL or 
MOS logic arrays. 

□ External control provided for output polarity 
selection. 

□ External control provided for selection of odd 
or even parity. 

□ Two key roll-over operation. 

□ N-key lockout. 

□ Programmable coding with a single mask 
change. 

□ Self-contained oscillator circuit. 

□ Externally controlled delay network provided 
to eliminate the effect of contact bounce. 

□ One integrated circuit required for complete 
keyboard assembly. 

□ Static charge protection on all input and 
output terminals. 

□ Entire circuit protected by a layer of glass 
passivation. 

PIN CONFIGURATION 

VCC C 40 3 Frequency Control A 

Fraqutncy CooifOl B C 2 39 3*o'| 
F r#Qw*f>cy COAt'Ol C C 38 ]X1 

Snift input Q 37 3x2 Keyboard 
Control Input C s 38 3X3 Matrix 

Pauly lnv*fT Input Q 6 35 3X4 
Outputs 

P«nlyOulput £ 7 34 3*5 

bait Output BB C B 33 3*6 

Data Output B* C 9 32 3 X7 

Data Output 66 C 10 31 3 vo'I 

Oata Output BB L 30 3 vi 

Catj Output Ra f 3 V2 

Oata Output B3 [ 13 

4 3 

28 3V3 

Data Output 0? C 14 27 3V4 Keyboard 

Oata Output 0t £ 15 28 3** * Matrix 

Stroba Output C 16 25 3 v« Inputs 

Grouna £ 17 24 3V7 

Voc. C 18 23 3 v® 

SlfOt* Control Input C 1® 22 3*® 

Data & StroCc C 20 21 3viO; 
Invert input 

PACKAGE 40-Pin D.I.P. 

GENERAL DESCRIPTION 
The SMC KR2376-XX is a 2376-bit Read Only Memory 
with all the logic necessary to encode single pole 
single throw keyboard closures into a usable 9-bit 
code Oata and strobe outputs are directly compatible 
with TTL/DTl or MOS logic arrays without the use of 

any special interface components. 
The KR2376-XX is fabricated with low threshold. 

P-channei technology and contains 2942 P-channel 
enhancement mode transistors on a single monolithic 
chip, available in a 40 pm dual-in-line package. 

TYPICAL CONNECTION OF KR2376-XX 
VO VI V? vs V4 vs V6 Y7 Y8 V9 Y-0 

KR2JTS-XX 

V*, 

Vcc 

It 
17 

1 

SHIFT I^JT 

COWTPC4 INPUT 

STROK 
COWTPCC l*4=\/T 19 

Vcc Vcc 

CATA&STAOK » 
*VfRT ISJPUT 

PAPITY * 1 
SWtRT I*JPUT 

i OCLAY 

31 y> 29 2* 27 2* 25 2i 23 22 21 

50 KM/ 
OSCILLATOR 

parity output 

1 TTLTDTljSAOS J COMPAT^C OUTPUT cttvens 

16 T 6 f^T’O nw 14 1 is 

T' ’T ' T 
M0TO6D5O4B3B2B1 

✓ 

4 11 frT COMPARATOR l—l 

CiOCK 
CONTROL 

| 11 STAGE RING COUNTER jl— 

1 LL L 1.111 L 

r~ S 
2376 fllT POM k— STAGE 

19 BIT i 88 KEYS » 3 UCOE> PING 
COUNTER 

m—iiii—r-r- 

S3 
CONTROL 

VO 

y* 
37 
3* 
S' 

X) 
xt 

XI 

*2 
tr 
X4 

X5 
IB 

X7 

V10 

66 SPST KEYBOARD SWTCHES 
r0~ ~ Y1 

X6 

X7 

V* 
s 

/ X \ 

1 

4 
* m* ** 

✓ 

TYPICAL SWfTCH 

EXAMPLE 

Fig. 1 DATA OUTPUTS R1 f6*KO> Cl I COi*/l CTCNKH 1S rm OtWy 

wTicZkOi4! 
rm 6i 

C7 «0ST) 30KK* CW IfXQu«ncy 
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MAXIMUM GUARANTEED RATINGS! 
Operating Temperature Range.0°C to +70° C 
Storage Temperature Range.-65° C to +150° C 
GND and Vgg, with respect to Vcc.-20V to +0.3V 
Logic Input Voltages, with respect to Vcc.-20V to +0.3V 

t Stresses above those listed may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or at any other condition above those indicated in 
the operational sections of this specification is not implied. 

i 

ELECTRICAL CHARACTERISTICS 
(Ta = 0° C to +70° C. Vcc = +5V ±0.5V, Vgg = -12V ±1.0V. unless otherwise noted) 

Characteristics Min Typ Max Unit Conditions 

CLOCK 20 50 100 KHz see fig.1 footnote (*•) for typical 
R-C values 

DATA INPUT 
Logic "0" Level +0.8 V 
Logic "1" Level Vcc-1.5 V 
Input Capacitance 

INPUT CURRENT 
10 P* 

•Control. Shift &Y0 
thru Y10 

•Control. Shift &Y0 
10 100 140 //A Vin = +5.0V 

thru Y10 5 30 50 /lA Vin = Ground 
Data Invert. Parity Invert 

DATA OUTPUT & X OUTPUT 
.01 1 Vin = -5.0V to +5.0V 

Logic "0" Level +0.4 V Iol = 1.6mA (see fig. 7) 
Logic "1“ Level Vcc-10 V Ioh = 100 jjA 

POWER CONSUMPTION 140 200 mW Norn. Power Supp. Voltages 
(see fig. 8) 

SWITCH CHARACTERISTICS 
Minimum Switch Closure see timing diagram-fig. 2 
Contact Closure Resistance 

between XI and Y1 
Contact Open Resistance 

300 Ohm 

between XI and Y1 1 xl0r Ohm 

•Inputs with Internal Resistor to Vgg 

DESCRIPTION OF OPERATION 

The KR2376-XX contains (see Fig. 1). a 2376-bit 
ROM. 8-stage and 11-stage ring counters, an 11-bit 
comparator, an oscillator circuit, an externally 
controllable delay network for eliminating theeffect 
of contact bounce, and TTL/DTL/MOS compatible 
output drivers. 

The ROM portion of the chip is a 264 by 9-bit 
memory arranged into three 88-word by 9-bit 
groups. The appropriate levels on the Shift and 
Control inputs selects one of the three 88-word 
groups; the 88-individual word locations are 
addressed by the two ring counters. Thus, the ROM 

address is formed by combining the Shift and 
Control Inputs with the two ring counters. 

The external outputs of the 8-stage ring counter 
and the external inputs to the 11-bit comparator are 
wired to the keyboard to form an X-V matrix with the 
88-keyboard switches as the crosspoints. In the 
standby condition, when no key is depressed, the 
two ring counters are clocked and sequentially 
address the ROM; the absence of a Strobe Output 
indicates that the Data Outputs are ‘not valid' at 
this time. 

i 
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When a key is depressed, a single path is completed 
between one output of the 8-stage ring counter 
(XO thru X7) and one input of the 11-bit comparator 
(Y0-Y10). After a number of clock cycles, a condition 
will occur where a level on the selected path to the 
comparator matches a level on the corresponding 
comparator input from the 11-stage ring counter. 
When this occurs, the comparator generates a 
signal to the clock control and to the Strobe Output 
(via the delay network). The clock control stops the 
clocks to the ring counters and the Data Outputs 

(91-B9) stabilize with the selected 9-bit code, 
indicated by a 'valid' signal on the Strobe Output. 
The Data Outputs remain stable until the key is 
released. 

As an added feature two inputs are provided for 
external polarity control of the Data Outputs. Parity 
Invert (pin 6} provides polarity control of the Parity 
Output (pin 7) while the Data and Strobe Invert 
Input (pin 20) provides for polarity control of Data 
Outputs B1 thru B8 (pins 8 thru 15) and the Strobe 
Output (pin 16). 

SPECIAL PATTERNS 

Since the selected coding of each key is defined 
during the manufacture of the chip, the coding can 
be changed to fit any particular application of the 
keyboard. Up to 264 codes of up to 8 bits (plus one 
parity bit) can be programmed into the KR2376-XX 

ROM covering most popular codes such as ASC11. 
EBCDIC. Selectric. etc.aswellasmanyspecialized 
codes. The ASCII code is available as a standard 
pattern. For special patterns, use Fig. 9. 
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FLOW CHART—TRANSMITTER FLOW CHART-RECEIVER 

Circurt diagram* uMuing SMC product* are included at a mean* o« illustrating typical semiconductor applica¬ 
tions. consequently compete information aulfiCient tor construction purposes IS not necessarily frren The 
information rat ocen carc'u >■ crocked and * believed to be entirety refeaWe However, no responsibility tt 
assumed tor inaccuracies Furthermore, such mtormat-on does not convey 10 the Purchaser of the semiconductor 
devices described any license under the patent rights ot SMC or others SMC reserves the nght to make changes 
at any time in order to improve Oesign and supply the Pest product possible 
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we teep ahead of our competition so you can keep ahead of yours 

CRT 5027 
CRT 5037 
CRT 5057’ 

CRT Video Timer and Controller 
/U,PC FAMILY 

VTAC® 
FEATURES 
□ Fully Programmable Display Format 

Characters per data row (1-200) 
Data rows per frame (1-64) 
Raster scans per data row (1-16) 

D Programmable Monitor Sync Format 
Raster Scans/Frame (256-1023) 
'•Front Porch" 
Sync Width 
"Back Porch" 

Interlace/Non-Interlace 
Vertical Blanking 

□ Lock Line Input (CRT 5057) 
□ Direct Outputs to CRT Monitor 

Horizontal Sync 
Vertical Sync 
Composite Sync (CRT 5027, CRT 5037) 
Blanking 

Cursor coincidence 
□ Programmed via: 

Processor data bus 
External PROM 
Mask Option ROM 

□ Standard or Non-Standard CRT Monitor Compatible 
C Refresh Rate:60Hz.50Hz,... 
□ Scrolling 

Single Line 
Multi-Line 

C Cursor Position Registers 
£ Character Format: 5x7,7x9.... 
£ Programmable Vertical Data Positioning 
£ Balanced Beam Current Interlace (CRT 5037) 
□ Graphics Compatible 

PIN CONFIGURATION 

A2C rr 40 l A1 
A3 C 2 39 : A6 
CSC 3 38 ) H0 
R3 C 4 37 1 Ml 
R2 C 5 3fl ) H2 

gnd 6 35 JM3 
R1 t 7 34 )H4 
Re c 8 33 JH5 
OSE 9 32 1 M6 

LLI/CSYN ( 10 31 J M7/DR5 
VSYN ( 11 

• 
30 1 OR4 

CCC [ u 29 ) OR3 
VDO( 13 28 J OR2 
VCC E 14 27 3 DAI 

MSYN C 15 26 3DRC 
CRV t ie 25 3 D80 

BL I 17 24 3D61 
OB7C 18 23 3 082 
oec C 22 0B3 
OS5 £ 20 21 3 0B4 

PACKAGE: 40-Pin D.I.P 

□ Split-Screen Applications 
Horizontal 
Vertical 

O Interlace or Non-Interlace operation 
C TTL Compatibility 
□ BUS Oriented 
□ High Speed Operation 
□ COPLAMOS* N-Channel Silicon 

Gate Technology 
□ Compatible with CRT 8002 VDAC™ 
□ Compatible with CRT 7004 

GENERAL DESCRIPTION 
The CRT Video Timer and Controller Chip (VTAC)* isa user programmable 40-pin COPLAMOS* nchannel MOS/LSI 

device containing the logic functions required to generate ail the timing signals for the presentation and formattmq of 
interlaced and non-interlaced video data on a standard or non-standard CRT monitor. 

With the exception of the dot counter, which may be clocked at a video frequency above 25 MHz and therefore not 
recommended for MOS implementation, all frame formatting, such as horizontal, vertical, and composite sync, characters 
per data row. data rows per frame, and raster scans per data row and per frame are totally user programmable. Thedatarow 
counter has been designed to facilitate scrolling. 

Programming is effected by loading seven8 bit control registersdirecttyoffanSbitbidirectionaldatabus.Fourregister 
address lines and a chip select line prov.de complete microprocessor compatibility for program controlled set up The device 
can be 'self loaded" v.aanextornalPROMtiedonthedatabusasdescr.bed in the OPERATION section. Formatting can also 
be programmed by a single mask option. 

In addition to the seven control registers two additional registers are provided to store the cursor character and data 
row addresses for generation of the cursor video signal. The contentsof these two registers can also be read out onto the 
bus for update by the program. 

Throe versions of the vtac® are available. The CRT 5027 provides non-interlaced operation with an even or odd 
number of scan lines per data row. or interlaced operation with an even number of scan lines per data row. The CRT 5037 
may be programmed for an odd or even number of scan lines per data row in both interlaced and non-interlaced modes. 
Programming the CRT 5037 for an odd number of scan lines per data row eliminates character distortion caused by the 
uneven beam current normally associated with odd field/even field interlacing of alphanumeric displays. 

The CRT 5057 provides the ability to lock a CRTs vertical refresh rate, as controlled by the VTAC's® vertical sync 
pulse, to the 50 Hz or 60 Hz line frequency thereby eliminating the so called "swim" phenomenon. This is particularly 
well suited for European system requirements. The line frequency waveform, processed to conform to the VTAC’s® 
specified logic levels, is applied to the line lock input. The VTAC® will inhibit generation of vertical sync until a zero to 
one transition on this input is detected The vertical sync pulse is then initiated within one scan line after this transition 
rises above the logic threshold of the VTAC.® 

To provide tne pin required for the line lock input, the composite sync output is not provided in the CRT 5057. 

•FOR FUTURE RELEASE 

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980 
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Description of Pin Functions 

Pin No. Symbol Name 
Input/ 
Output Function 

25-18 DB0-7 Data Bus I/O Data bus. Input bus for control words from microprocessor or 
PROM. Bidirectional bus for cursor address. 

3 CS Chip Select 1 Signals chip that it is being addressed 
39.40.1.2 A0-3 Register 

Address 
1 Register address bits for selecting one of seven control 

registers or either of the cursor address registers 
9 DS Data Strobe 1 Strobes DB0-7 into the appropriate register or outputs the 

cursor character address or cursor line address onto the data bus 
12 DCC DOT Counter 

Carry 
1 Carry from off chip dot countor establishing basic character 

clock rate. Character clock. 
38-32 H0-6 Character 

Counter Outputs 
0 Character counter outputs. 

7.5.4 R1-3 Scan Counter 
Outputs 

0 Three most significant bits of the Scan Counter; row select 
inputs to character generator. 

31 H7/DR5 H7/DR5 o Pin definition is user programmable. Output is MSB of 
Character Counter if horizontal line count (REG.0) is ^128; 
otherwise output is MSB of Data Row Counter. 

8 Scan Counter LSB 0 Least significant bit of the scan counter. In the inter¬ 
laced mode with an even number of scans per data row, 
R0 will toggle at the field rate; for an odd number of 
scans per data row in the interlaced mode. R0 will toggle 
at the data row rate. 

26-30 DR0-4 Data Row 
Counter Outputs 

0 Data Row counter outputs. 

17 BL Blank o Defines non active portion of horizontal and vertical scans. 
15 HSYN Horizontal Sync 0 Initiates horizontal retrace. 
11 VSYN Vertical Sync 0 Initiates vertical retrace. 
10 CSYN/ 

LU 
Composite Sync Output/ O/l 
Line Lock Input 

Composite sync is provided on the CRT 5027 and CRT 5037. 
This output is active in non-interlaced mode only. Provides a true 
RS-170 composite sync wave form. For the CRT 5057. this pin is 
the Line Lock Input. The line frequency waveform, processed to 
conform to the VTAC*s« specified logic levels, is applied to this pin. 

16 CRV Cursor Video 0 Defines cursor location in data field. 

14 Vcc Power Supply PS +5 volt Power Supply 
13 Voo Power Supply PS ■*■12 volt Power Supply 
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Operation 

The design philosophy employed was to allow the device to interface effectively with either a microprocessor based or 
hardwire logic system. The device is programmed by the user in one of two ways: via the processor data bus as part of the 
system initialization routine, or during power up via a PROM tied on the data bus and addressed directly by the Row Select 
outputs of the chip. (Seo figure 4). Seven 8 bit words are required to fully program the chip. Bit assignments for these words 
are shown in Table 1. The information contained in these seven words consists of the following: 

Horizontal Formatting: 
Character&Data Row A 3 bit codo providing 8 mask programmable character lengths from 20 to 132. 

The standard device will be masked for the following character lengths: 20.32. 
40.64.72.80.96. and 132. 

Horizontal Sync Delay 3 bits assigned providing up to 8 character times for generation of "front porch". 

Horizontal Sync Width 4 Oils assigned providing up to 15 character times for generation of horizontal 
sync width. 

Horizontal Line Count 8 bits assignod providing up to 256 character times for total horizontal formatting. 

Skew Bits A 2 bit code providing from a 0 to 2 character skew (delay) between the 
horizontal address counter and the blank and sync (honzontal.verticaUomposite) 
signals to allow for retiming of video data prior to generation of composite video 
signal. The Cursor Video signal is also skewed as a function of this code. 

Vertical Formatting: 
Interlaced/Non-interlaced This bit provides for data presentation with odd/even field formatting for inter¬ 

laced systems It modities the vertical timing counters as described below. 
A logic 1 establishes the interlace mode. 

Scans/Frame 8 bits assigned, defined according to the following equations: Let X = value of 8 
assigned bits. 

1) in interlaced mode—scanstframe = 2X + 513. Therefore for 525 scans. 
programX = 6 (00000110). Vertical sync will occur precisely every 262.5 scans, 
thereby producing two interlaced fields 
Range = 513 to 1023 scans/frame, odd counts only. 
2) in non-interlaced mode—scans/frame • 2X + 256. Therefore for 262 scans, 
program X - 3 (OOOOOO11). 
Range = 256 to 766 scans/frame, even counts onfy. 

In either mode, vertical sync width is fixed at three horizontal scans (■ 3H). 

Vertical Data Start 8 bits defining the number of raster scans from the leading edge of vertical 
sync until the start of display data. At this raster scan the data row counter is 
set to the data row address at the top of the page. 

Data Rows'Frame 6 bits assigned providing up to 64 data rows per frame. 

Last Data Row 6 bits to allow up or down scrolling via a preload defining the count of the last 
displayed data row. 

Scans-'Data Row 4 txts assigned providing up to 16 scan lines per data row. 

Additional Features 

Device initialization: 
Under microprocessor control—The device can be roset under syslem or program control by presenting a t010 address 

on A3-0. The device will remain reset at the top of the even field page until a start command is executed by presenting a 1110 
address on A3-0. 

Via “Self Loading"—In a non-processor environment, the self loading sequence Is effected by presenting and holding the 
1111 address on A3-0. and is initiated by the receipt of the strobe pulse (OS). The 1111 address should be maintained long 
enough to insure that all seven registers have been loaded (in most applications under one millisecond). The timing 
sequence will begin one line scan after the 1111 address is removed. In processor based systems, self loading is initiated by 
presenting the 0111 address to the device. Self loading is terminated by presenting the start command to the device which 
also initiates the timing chain. 

Scrolling—In addition to the Register 6 storage of the last displayed data row a "scroll" command (address 1011) 
presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications. 
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Horizontal Line Count: 
Characters/Data Row: 

Horizontal Sync Delay: 
Horizontal Sync Width: 

Skew Bits 

Scans/Frame 

Vertical Data Start: 

Data Rows/Frame: 

Last Data Row: 

Mode: 

Scans/Data Row: 

Control Registers Programming Chart 

Total Characters/Line * N +1, N = 0 to 255 (DBO = LSB) 
DB2 DB1 DBO 

0 0 0 * 20 Active Characters/Data Row 
0 0 1 * 32 
0 1 0 = 40 
0 1 1 = 64 
1 0 0 - 72 
1 0 1 = 80 
1 1 0 = 96 
1 1 1 = 132 

= N. from 1 to 7 character times (DBO = LSB) (N = 0 Disallowed) 
* N, from 1 to 15 character times (DB3 = LSB) (N = 0 Disallowed) 

Sync/Blank Delay Cursor Delay 
DB7 DBS (Character Times) 

0 0 0 0 
10 1 0 
0 12 1 
112 2 

8 bits assigned, defined according to the following equations: 
Let X = value of 8 assigned bits. (DBO = LSB) 

1) in interfaced mode-scans/frame - 2X + 513. Therefore for 525 scans, 
program X = 6 (00000110). Vertical sync will occur precisely every 262.5 
scans, thereby producing two interlaced fields. 

Range ■ 513 to 1023 scans/frame, odd counts only. 

2) in non-interlaced mode-scans/frame • 2X + 256. Therefore for 262 
scans, program X * 3(00000011). 
Range = 256 to 766 scans/frame, even counts only. 

In either mode, vertical sync width is fixed at three horizontal scans (= 3H). 

N ■ number of raster lines delay after leading edge of vertical sync of 
vertical start position. (DBO = LSB) 
Number of data rows • N +1,N«0to63 (DBO* LSB) 

N = Address of last dsplayed data row, N = 0 to 63, ie; for 24 data rows, 
program N * 23. (DBO * LSB) 

Register, 1, DB7 ■ 1 establishes Interlace. 
Interlace Mode 

CRT 5027: Scans per Data Row = N +1 where N = programmed number of 
data rows. N ■ 0 to 15. Scans per data row must be even counts only. 

CRT 5037, CRT 5057: Scans per data Row ■ N +2.N * 0 to 14, odd or even 
counts. 

Non-Interlace Mode 

CRT 5027, CRT 5037. CRT 5057: Scans per Data Row * N + 1. odd or 
even count. N ■ Oto 15. 

"LT 
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A3 A2 A1 A0 

0 0 0 0 
0 0 0 1 
0 0 10 
0 0 11 
0 10 0 
0 10 1 
0 110 
0 111 

10 0 0 
10 0 1 
10 10 

10 11 

110 0 
110 1 
1110 

1111 

Register Seiects/Command Codes 

Select/Command 

Load Control Register 0 
Load Control Register 1 
Load Control Register 2 
Load Control Register 3 
Load Control Register 4 
Load Control Register 5 
Load Control Register 6 
Processor Initiated Self Load 

Read Cursor Line Address 
Read Cursor Character Address 
Reset 

Up Scroll 

Description 

} See Table 1 

Command from processor instructing 
VTAC' to enter Self Load Mode (via ex¬ 
ternal PROM) 

Resets timing chain to top left of page. Reset 
is latched on chip by Ds and counters are 
held until released by start command. 
Increments address of first displayed data 
row on page, ie: prior to receipt of scroll 
command—top line • 0. bottom line = 23. 
After receipt of Scroll Command—top line = 
1. bottom line = 0. 

Load Cursor Character Address* 
Load Cursor Line Address* 
Start Timing Cham Receipt of this command after a Reset or 

Processor Self Load command will release 
the timing chain approximately one scan line 
later. In applications requiring synchronous 
operation of more than one CRT 5027 the 
dot counter carry should be held low dunng 
the DS for this command. 

Non-Processor Self Load Device will begin self load via PROM 
when D5 goes low. The 1111 command 
should be maintained on A3-0 long 
enough to guarantee self load. (Scan 
counter should cycle through at least 
once). Self load is automatically termi¬ 
nated and timing chain initiated when the 
all “I s" condition is removed, indepen¬ 
dent of P5. For synchronous operation 
of more than one VTAC*. the Dot Counter 
Carry should be held low when the com¬ 
mand is removed. 

‘NOTE: During Self-Load, the Cursor Character Address Register (REG 7) and the Cursor Row Address 
Register (REG 8) are enabled during states Cl 11 and 1CCO of the R3-R0 Scan Counter outputs respectively. 
Therefore, Cursor data in the PROM should be stored at these addresses. 

TABLE 1 

BIT ASSIGNMENT CHART 
KXWCWTAl l*i€ COUNT SKEW BITS DATA RCW$TRAU€ 
,-1-, #—i—- --1- 

REG# ft J_Mil *“» 
7|6|5| | | | a 

MODE INTER. ACtO MSrNC WiQTh mS'NC DELAY 
N3NiNTfffcAC€D i-1-i (-1-, 

SCANtlSEStRAME 
__1_ —i 

REG * 7| 6 | | | 3 | Z 1 |0 | *0. 'Mill 5: 

SCAVSOATA ROW CHARACTERS DATA ROW VERTICAL DATA START 
f_-_1_ 

nt02 ! 6 1 1 1 31 2 I* H 7| 1 1 1 II a 

RCG« 

l AST ClS^AVfOOATA t*JH 
.-1- - 

WTT I R1 
CU*$0A CHARACTER ADDRESS 

"“'M Mil TTal 

RE 5 6 

1 
CURSOR ROW ADDRESS 

- I 





MAXIMUM GUARANTEED RATINGS* 
Operating Temperature Range ...0*C to + 70*C 
Storage Temperature Range ...-55*C to ♦ 150*0 
Load Temperature (soldering, 10 sec).+325*C 
Positive Voltage on any Pin. with respect to ground .♦ 18.0V 
Negative Voltage on any Pin. with respect to ground .- 0.3V 

'Stresses above those listed may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or at any other condition above those indicated in the operational 
sections of this specification is not implied. 

NOTE: When powering this device from laboratory or system power supplies, it is important that 
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies 
exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. 
In addition, voltage transient? on the AC power line may appear on the DC output. For example, the 
bench power supply programmed to deliver +12 volts may have large voltage transients when the 
AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used. 

ELECTRICAL CHARACTERISTICS (Ta=0*C to 70‘C. Vcc« +5V-SV Voo* * 12Vs5%. unless otherwise noted) 

Parameter Min. 

D.C. CHARACTERISTICS 
INPUT VOLTAGE LEVELS 

Low Level. V«. 
High Level. Vih Vcc-1.5 

OUTPUT VOLTAGE LEVELS 
Low Level—Va for Rfif-3 
Low Level—Va all others 
High Level—Voh for R0-3. DB0-7 2.4 
High Level—Voh all others 2.4 

INPUTCURRENT 
Low Level. In (Address, CS only) 
Leakage, In (All Inputs except Address. CS) 

INPUT CAPACITANCE 
Data Bus. Cin 

DS. Clock. Cin 

All othor. Cin 

DATA BUS LEAKAGE in INPUT MODE 
loe 

POWER SUPPLY CURRENT 
Icc 
loo 

A.C. CHARACTERISTICS 
DOT COUNTER CARRY 

frequency 0.2 
PWm 35 
PWi 215 
tr. tf 

DATA STROBE 
PW55 150ns 

ADDRESS. CHIP SELECT 
Set-uptime 125 
Hold time 50 

DATA BUS-LOADING 
Set-uptime 125 
Hold time 75 

DATA BUS-READING 
Toti* 
Toci« 5 

OUTPUTS: Hfif-7. HS. VS. 8L. CRV. 
CS-Toeu 

OUTPUTS: R7-3. DR0-5 
Toco 

Typ. Max. Unit Comments 

0.8 V 
Vcc V 

0.4 V lot =3 2ma 
0.4 V lex *1 6ma 

lo-»80Ma 
loH-40/ia 

250 fiA Vin«0.4V 
10 /*A 0<Vla<<Vcc 

10 15 pF 
25 40 pF 
10 15 PF 

10 aA 0.4V * VIN * 5.25V 

80 100 mA 
40 70 mA 

Ta« 25’C 

4.0 MHz Figure 1 
ns Figure 1 
ns Figure 1 

10 50 ns Figure 1 

10*s Figure 2 

ns Figure 2 
ns Figure 2 

ns Figure 2 , 
ns Figure 2 

125 ns Figure 2. CL«50pF 
60 ns Figure 2. CL=50pF 

125 ns Figure 1.CL*20pF 

500 ns Figure 3, CL-20pF 

• R0-3 and DR0-5 may change prior to the falling edge of H sync 

Restrictions 
1. Only one pin is available for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore 
loaded into the chip by presenting one set of addresses and outpuled by presenting a (Afferent set of addresses. Therefore 
the standard WRITE and READ control signals from most microprocessors must be "NORed” externally to present a single 
strobe (£55) signal to the device. 
2. In interlaced mode the total number of character slots assigned to the horizontal scan must be evon to insure that vertical 
sync occurs precisely between horizontal sync pulses. 
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General Timing 
HORIZONTAL TIMIVO 

$TAOT Qt LINE N START OFLlNCNvl 

%i/i/i)i///i/))i//it//n/n n I777777 
ACTIVE V'0€0» 

CHARACTERS PER OATA LINE 

HORIZONTAL $VNC DELAY 
(FRONT PORCH! 

HORIZONTAL SYNC WOTm-J 

horizontal LINE COUNT.h • 

VERTICAL THWjG 

START Of FRAME M OR OOOF<LO 
SON L»NES PER FRAME 

STARTOP FRAME M* l OP EVEN FIELD 

1 

V 

J77777///////7/////////77///77771 fH 7777 

VERTICAL DATA 
START 

ACTIVE \n0€0- 
OATA ROWS PER FRAME 

-i 
L VERTICAL SYNC 

■ *H 

H SYNC 

V<x: 

Vo-j 
V SYNC • 

Composite Sync Timing 
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Vertical Sync Timing 
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S**C m 

_njiimfmpumri 
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~t 1111111111111 m 1111 
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Start-up, CRT 5027 

Whon employing microprocessor controlled loading of the CRT 5027's registers, the following se¬ 
quence of instructions is necessary: 

ADDRESS 
1110 
10 10 
0 0 0 0 

COMMAND 
Start Timing Chain 
Reset 
Load Register 0 

0 110 
1110 

Load Register 6 
Start Timing Chain 

The sequence of START RESET LOAD START is necessary to insure proper initialization of the 
registers. 

This sequence is not required if register loading is via either of the Self Load modes. This sequence 
is optional with the CRT 5037 or CRT 5057. 

Iqard microsystems 
PORADONI 

> orv 

Circuit diagrams utilising SMC products are included as a mtons of illustrating typical semiconductor applica¬ 
tions. consequently compete information sufficient tor construction purposes is not necessardy gv.cn The 
information has been carefully checked and rs belied to be entirety reliable However no responsibility it 
assumed for inaccuracies Furthermore. Such information does not comey to the purchaser of the semiconductor 
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Appendix C9 

STANDARD MICROSYSTEMS 
CORPORATION 

» Maras tM. Kjiaajge NV vw 
(Mim-VOO Tta W W-ttM 

we keep ahead of our competition so you can keep ahead of yours 

CRT 8002 
/XPC FAMILY 

CRT Video Display Attributes Controller 
Video Generator 

VDAC™ 
FEATURES 

□ On chip character generator (mask programmable) 
128 Characters (alphanumeric and graphic) 
7x11 Dot matrix block 

□ On chip video shift register 
Maximum shift register frequency 

CRT 8002A 20MHz 
CRT 8002B 15MHz 
CRT 8002C 10MHz 
Access time 400ns 

□ On chip horizontal and vertical retrace video blanking 
□ No descender circuitry required 
□ Four modes of operation (intermixable) 

Internal character generator (ROM) 
Wide graphics 
Thin graphics 
External inputs (fonts/dot graphics) 

□ On chip attribute logic-character, field 
Reverse video 
Character blank 
Character blink 
Underline 
Strike-thru 

□ Four on chip cursor modes 
Underline 
Blinking underline 
Reverse video 
Blinking reverse video 

□ Programmable character blink rate 
□ Programmable cursor blink rate 

PIN CONFIGURATION 

28 RET8L 

27 CURSOR 

26 MS# 

25 MSI 

24 BLINK 

23 V SYNC 

22 CHABL 

21 REVID 

20 UNOLN 

19 STKRU 

18 ATTBE 

17 GND 

16 R0 

IS R1 

□ Subscriptable 
□ Expandable character set 

External fonts 
Alphanumeric and graphic 
RAM. ROM. and PROM 

□ On chip address buffer 
□ On chip attribute buffer 
□ +5 volt operation 
□ TTL compatible 

□ MOS N-channel silicon-gate COPLAMOS* process 
□ CLASP® technology-ROM and options 
D Compatible with CRT 5027 VTAC® 

General Description 
The SMC CRT 8002 Video Display Attributes Controller 
(VDAC) is an N-channel COPLAMOS* MOS/LSl device 
which utilizes CLASP® technology. It contains a 
7X11X128 character generator ROM. a wide graphics 
mode, a thin graphics mode, an external input mode, 
character address/data latch, field and/or character 
attribute logic, attribute latch, four cursor modes, two 
programmable blink rates, and a high speed video 
shift register. The CRT 8002 VDAC’* is a companion 
chip to SMCs CRT 5027 VTAC Together these two 
chips comprise the circuitry required for the display 
portion of a CRT video terminal. 

The CRT 8002 video output may be connected directly 
to a CRT monitor video input. The CRT 5027 blanking 
output can be connected directly to the CRT 8002 
retrace blank input to provide both horizontal and 
vertical retrace blanking of the video output. 
Four cursor modes are available on the CRT 8002. 
They are: underline, blinking underline, reverse video 
block, and blinking reverse video block. Any one of 
these can be mask programmed as the cursor func¬ 
tion. There is a separate cursor blink rate which can 
be mask programmed to provide a 15Hz to 1 Hz blink 
rate. 

The CRT 8002 attributes Include: reverse video, char¬ 
acter blank, blink, underline, and strike-thru. The 
character blink rateis maskprogrammablefrom7.5Hz 
to 0.5Hz and has a duty cycle of 75/25. The underline 
and strike-thru are similar but independently con¬ 
trolled functions and can be mask programmed to any 
number of raster lines at any position in the character 
block. These attributes are available in all modes. 

In the wide graphic mode the CRT 8002 produces a 
graphic entity the size of the character block. The 
graphic ontity contains 8 parts, each of which is asso¬ 
ciated with one bit of a graphic byte, thereby provid¬ 
ing for 256 unique graphic symbols. Thus, the CRT 
8002 can produce either an alphanumeric symbol or 
a graphic entity depending on the mode selected. 
The mode can be changed on a per character basis. 

The thin graphic mode enables the user to create sin¬ 
gle line drawings and forms. 

The external mode enables the user to extend the on- 
chip ROM character set and/or the on-chip graphics 
capabilities by Inserting external symbols. These ex¬ 
ternal symbols can come.from either RAM, ROM or 
PROM. 

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980 
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MAXIMUM GUARANTEED RATINGS' 
Operating Temperature Range .09Cto + 70*C 
Storage Temperature Range .- 55'C to +150®C 
Lead Temperature (soldering. 10 sec.).+3256C 
Positive Voltage on any Pin. with respect to ground . + 8.0V 
Negative Voltage on any Pm. with respect to ground .- 0.3V 

•Stresses above those listed may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or at any other condition above those indicated in the operational 
sections of this specification is not implied. 

NOTE: When powering this device from laboratory or system power supplies. It is important that 
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies 
exhibit voltage spikes or “glitches" on their outputs when the AC power is switched on and off. 
In addition, voltage transients on the AC power line may appear on the DC output. If this possibility 
exists it is suggested that a clamp circuit be used. 

ELECTRICAL CHARACTERISTICS (T*-0eC to 70*C. Vcc- +SVr5%. unless otherwise noted) 

Parameter Min. Typ. Max. Unit Comments 

D.C. CHARACTERISTICS 
INPUT VOLTAGE LEVELS 

Low-level, V,t 0.8 V excluding VDC 
High-level, Vw 

INPUT VOLTAGE LEVELS-CLOCK 

2.0 V excluding VDC 

Low-level. V* 0.8 V 
High-level, VIM 

OUTPUT VOLTAGE LEVELS 

4.3 V See Figure 6 

Low-Ievol, V^ 
High-level, Voh 

0.4 V lot = 0.4 mA. 74LSXX load 
2.4 V Ion” “20*iA 

INPUT CURRENT 
Leakage. IL (Except CLOCK) 10 ^A 0<V1N<Vcc 
Leakage. It (CLOCK Only) 

INPUT CAPACITANCE 

50 0SVw5Vcc 

Data 
LD/SH 

10 
20 

pF 
pF 

@ 1MHz 
@ 1MHz 

CLOCK 

POWER SUPPLY CURRENT 

25 PF @1MH 2 

>cc 100 rnA 

A.C. CHARACTERISTICS 
See Figure 6,7 

-——sr,,- v. «■ 
‘’f 

SYMBOL PARAMETER 
CRT 8002A CRT 8002B CRT 8002C 

UNITS 
MIN. MAX. MIN. MAX. MIN. MAX. 

VDC Video Dot Clock Frequency 1.0 20 1.0 15 1.0 10 MHz 

PW„ VDC—High Time 15.0 23 40 ns 

PWL VDC-Low Time 15.0 23 40 ns 

ter LD/§H cycle time 400 533 800 ns 

tr.t, Rise, fall time 10 10 10 ns 

tsn-uf Input set-up time 5K) ^0 ^0 ns 

twoto Input hold time 15 15 15 ns 

W tfCO Output propagation delay 15 50 15 65 15 100 ns 

t, LD/§H set-uptime 10 15 20 ns 

t, LD/Sfi hold time 15 15 15 ns 
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DESCRIPTION OF PIN FUNCTIONS 

PIN NO. SYMBOL NAME 
INPUT/ 

OUTPUT 

VIDEO 1 Video Output 

LD/ 

3 
4-11 

VDC Video Dot Clock 
Add'ess/Data 

12 Vcc 
13,14.15.16 R2.R3.Ri.Ri 

17 GND 

18 ATTBE 

Power Suppty 
Row Address 
Ground_ 
Attribute Enable 

PS 
I 

GND 
I 

STKRU Strike-Thru 

UNDLN Underline 

REVID Reverse Video 

CHABL Character Blank 

V SYNC ' V SYNC 

BLINK Blink 

MSI 
MSfl 

MSI 

Mode Select 1 
) Mode Select 0 

MSP MODE 

1 Alphanumeric 
0 Thin Graphics 
1 External Mode 
0 Wide Graphics 

_FUNCTION_ 

The video output contains the dot stroam for the selected row of the alpha¬ 
numeric. wide graphic, thin graphic, or external character after processing by 
the attribute logic, and the retrace blank and cursor inputs, 

i In the alphanumeric mode, the characters are ROM programmed Into the 
77 dots. (7X11) allocated for each of the 128 characters. Soo figure 5. The top 
row (Rf) and rows R12 to R15 are normally all zorcs as is column C7. Thus, tha 
character is defined in the box boundod by R1 to R11 and CD to C6. When a row 
of the ROM. via the attribute logic, is parallel loaded into the 8-bit shift-register, 
me first bit serially shifted out is C7 (A zero; or a one In REVID). It la followed 
by C6.C5, through C0. 
The timing of the Load/Shift pulse will determine the number of additional 
(-. zoro to N) backfill zeros (or ones if in REViD) shifted out. See figure 4. 
When the noxt Load/§hih pulse appoars the next character's row of the ROM, 
via the attribute logic, is parallel loaded into the shift registor and the cycle 
repeats._ 
The 8 bit shift-register parallel-in load or serial-out shift modes are established 
by the Load/5hi?t input. When low. this Input enables the shift register for 
serial shifting with each Video Dot Clock pulse. When high, the shift register 
parallel (broadside) data inputs are enabled and synchronous loading occurs 
on the noxt Vidoo Dot Clock pulse. During parallel loading, serial data flow 
is inhibited. The Address/Data inputs (AD-A7) are latched on the negative 
transition of the Load/SETft Input. See timing diagram, figure 7. 
Frequency at which video is shifted._ 
In the Alphanumeric Mode the 7 bits on Inputs (AD-A6) are Internally decoded 
to address one of the 128 available characters (A7-X). In the External Mode. 
A0-A7 i»used to insert an 8 bit word from a user defined external ROM, PROM 
or RAM into tho on-chip Attribute logic. In the wide Graphic Modes A0-A7 is 
used to define one of 256 graphic entities. In the thin Graphic Mode A0-A2 is 
used to define the 3 lino segments. 
+ 5 volt power supply_ 
These 4 binary inputs define the row addross in the current character block. 
Ground__ 
A positive level on this input onaWos data from the Reverse Video. Character 
Blank, Underline. Strike-Thru. Blink, Mode Select D. and Mode Select 1 Inputs 
lo be strobed into the on-chip attribute latch at the negative transition of 
the load/SKitt pulso. The latch loading is disabled when this input is low. 
The latched attributes will remain fixed until this input becomes high again. 
To facilitate attribute latching on a character by character basis, tie ATTBE 
htflh. See timing diagram, figure 7, 

Whon this inpul is high and RETBL = 0, tho parallel Inputs to the shift register 
are forced high (SR0-SR7). providing a solid line segment throughout the 
character block. The operation of strike-thru is modified by Reverse Video 
(see table 1). In addition, an on-chip ROM programmable decoder is available 
to decode the line count on which strike-thru is to bo placed as well as to 
program the strike-thru to be 1 to N raster lines high. Actually, the strike-thru 
decoder (mask programmable) logic allows the strike-thru to be any number 
or arrangement of horizontal lines In the character block. The standard strike- 
thru will be a double line on rows R5 and R6. 
Whon this input Is high and RETBL — O. the parallel Inputs to the shift rogister 
are forced high (SRD-SR7). providing a solid lino sogmont throughout the 
character block. The operation of underline is modified by Reverse Video 
(see table 1). In addition, an on-chip ROM programmable docodor is available 
to decode the line count on which underline is to bo placed as well as to 
program the underline to be 1 to N raster lines high. Actually, tho undortine 
decoder (mask programmable) logic allows tho undorlino to be any numbor 
or arrangement of horizontal lines in the character block. The standard undor- 
lino will bo a single lino on R11. 

. When this input is low ano RETBL - 0, data into tho Attribute Logic is presented 
'directly to the shift register parallel inputs. When revorso video is high data 
j into the Attribute Logic is Inverted and then presontod to the shift register 
paraliol inputs. This operation reverses the data and field video. Soo table 1. 
When this input is high, the parallel Inputs to the shift register aro all set low, 
providing a blank character line segment. Character blank will override blink. 
The operation of Character Blank is modified by the Reverse Video Input. 
See table 1. 

f This input is usod as tho dock Input for the two on-chfp mask programmable 
blink rate dividers. The cursor blink rate (50/50 duty cycle) will be twice the 
character blink rate (75/25 duty cycle). The divisors can be programmed from 
■f- 4 to -*- 3Q for the cursor (-*- 8 to + 60 for the character). 

When this input is high and RETBL = 0 and CHABL-0. the character will blink 
at the programmed character blink rate. Blinking is accomplished by blanking 
the character block with the Internal Character Blink clock. Tho standard 
character blink rate Is 1.875Hz._ 
These 2 inputs define the four modes of operation of the CRT 8002 as follows: 

Alphanumeric Mode - In this mode addresses A0-A8 (A7«X) are in¬ 
ternally decoded to address 1 of the 128 available ROM characters The 
addressed character along with the decoded row will define a 7 bit output 
from the ROM to bo loaded into the shift register vie the attribute logic. 

Thin Graphics Mode-In this mode A0-A2 (A3-A7-X) will be loaded 
Into the thin graphic logic along with the row addresses. This logic will 
define the segments of a graphic entity as defined in figure 2. The top of 
the entity will begin on row 0000 and will end on a mask programmable row. 
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DESCRIPTION OF PIN FUNCTIONS 

PIN NO. SYMBOL 1 NAME 
INPUT/ 
OUTPUT FUNCTION 

25 
26 

(corn.) 

1 

External Mode - In this mode the Inputs A0-A7 qo directly from the 
character latch Into tho shift register via the attribute logic. Thus the user 
may define external character fonts or graphic entities In an external 
PROM. ROM or RAM. Soe figure 3. 
Wide Graphics Mode-In this mode the Incuts A&-A7 will define a araohlc 
entity as described In figure 1. Each line of the graphic entity is determined 
by the wide graphic logic in conjunction with the row Inputs R0 to R3. In 
this mode each segment of the entity is defined by one of the bits of the 
8 bit word Therefore, the 8 bits can define any 1 of the 256 possible graphic 
entities These entities can butt up against each other to form a contiguous 
pattern or can be interspaced with alphanumeric characters. Each of the 
entities occupies the space of 1 character block and thus requires 1 byte 
of memory. 

These a modes can be intermixed on a per character basis. 

27 

! 

CURSOR Cursor 1 When this input is onabiod 1 of tho 4 pre-programmed cursor modes will be 
activated. The cursor mode is on-chlp mask programmable. The standard cur¬ 
sor will bo a blinking (at 3.75Hx) reverse video block. The 4 cursor modes are: 

Underline-In this mode an underline (1 to N raster lines) at the programmed 
underline position occurs. 
Blinking Underllne-ln this mode the underline blinks at the cursor rato. 

Rovcrse Video Block-In this medo the Character Block is set to reverse 
video. 
Blinking Reverse Video Block-In this mode tho Character Block is sot to 
reverse video at tho cursor blink rate. The Character Block will alternate 
between normal video and reverse video. 
The cursor functions arc listed in table 1. 

28 RETBL Retrace Blank 1 When this input is latched high, the shift rogistor parallel Inputs ore uncon¬ 
ditionally cleared to all zeros and loaded into tho shift register on the next 
Load/SnTFt pulse. This blanks the video, independent of ail attributes, during 

1 horizontal and vertical retraco time. 

TABLE1 
CURSOR RETBL REVID CHABL UNDLN* FUNCTION 

X 1 1 X X X "O’’ S.R. All 
0 0 

0 
0 0 D (§.R.) All 

0 0 0 0 1 M-J M (S.R.)* 
D (S.R.) All others 

0 0 0 1 X "Q" (S.R.) All 
0 0 1 0 0 D (S.R.) All 
0 0 1 0 1 «.Q.. (S.R.) 

D (S.R.) All others 
0 0 1 1 X 91 (S.R.) All 

Underline* 0 0 0 X M^lf (S.R.)* 
D (S.R.) All others 

Underline* 0 0 1 X (S.R.)* 
"O'* (S.R.) All others 

Underline* 0 1 0 X "0" (S.R.] I* 
D (S.R.; 1 All others 

Underline* 0 1 1 X “0" (S.R.] I* 
(S.R.] 1 All others 

Blinking*’Underline* 0 0 0 X «»^ II (S.R.)* Blinking 
D (S.R] l All others 

Blinking** Underline* 0 0 1 X <•^>1 (s.r.: 1* Blinking 
"O” (S.R.] 1 All others 

Blinking** Underline* 0 1 0 X "0" (s.r.; |* Blinking 
D (s.r.; I All others 

Blinking** Underline* 0 1 1 X "O" (s.r.; I* Blinking 
99 (S^ 1 All others 

REVID Block 0 0 0 0 “8“ (S.R.) All 
REVID Block 0 0 0 1 • 4l0,f (S.R.)* 

D (S.R. All others 
REVID Block 0 0 1 X 11^ 19 (s.r : ) All 
REVID Block 0 0 0 1 T (s.r.; r 

D (S.R.) All others 
REVID Block 0 1 0 0 D (S.R.) All 
REVID Block 0 1 0 1 11^ It (S.R.)* 

D (S.R.) All others 
REVID Block 0 1 1 X HQH (S.R.) All 
Blink** REVID Block 0 0 0 0 f 
Blink** REVID Block 0 0 0 1 
Blink** REVID Block 0 0 1 X \ Alternate Normal Video/REVID 
Blink*- REVID Block 0 1 0 0 1 At Cursor Blink Rate 
Blink’* REVID Block 0 1 0 1 
Blink*-REVID Block 0 1 1 X l 

*At Selected Row Decode **At Cursor Blink Rate 
Note: If Character is Bunking at Character Rate. Cursor will change it to Cursor Blink Rate. 
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FIGURE 5 

ROM CHARACTER BLOCK FORMAT 
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FIGURE 1 
WIDE GRAPHICS MODE 
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FIGURE 2 
THIN GRAPHICS MODE 

MS0=0 MSI =1 

— *0*0000 

— PR00PAWA5^f 
ROW 

i ■ i ■ i«i ■ i»i * iM i -1 

I.OOVTCAAE 

* THE INSIDE SEGMENT IB MASK PAOORAMWL9LE 
TO NOW WOO 

•• LENGTH OITEAWINEO BY LOrSR VCC Timing 

C7 C6 C5 C4 C3 C2 Cl Cg BF BF 

R0 

R9 

Ritf 

R11 NOTE 

R12 

R13 

R14 

R15 

MOTE: WHeoAl «••!".Iheunoerlln* 
tCw from* MtC at«!Ofl 
Whan A1 - "O'. «*• yiderlin#. 
If seicciaO. will appear. 

BF-back Mi 

R0-R15 

FIGURE 3 
EXTERNAL MODE 

MS0=1 MSI =0 

C7 C6 C5 C4 C3 C2 Cl C0 BF BF 

A7 I A6 I A5 I A4 I A3* I A2 I A1 I AO I A7 I A7 

BF=» back fill 

APPENDIX C 205 

Copyrighted material 



FIGURE 4 TYPICAL VIDEO OUTPUT 
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Circuit degramS Utilizing SMC product* are included a* a means Of illustrating typical semiconductor applica¬ 
tions. consequently complete information sufficient tor construction purposes tS not necessarily given The 
•nformaton has Been carelully Checked enq is t»el-e.«d to he entirety r#kat>te However. no responsibility « 
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Appendix CIO 

STANDARD MICROSYSTEMS 
CORPORATION 

uncoil* tirjr 
I5i6i??)-310C' IWtW-aMMt 

We fcBep ahead of our competition so you can keep ahead of Yours. 

COM 8046 
COM 8046T 

Baud Rate Generator 
Programmable Divider 

FEATURES PIN CONFIGURATION 
□ On chip crystal oscillator or external 

frequency input 
□ Single +5v power supply 
□ Choice of 32 output frequencies 
□ 32 asynchronous/synchronous baud rates 
□ Direct UART/USRT/ASTRO/USYNRT 

compatibility 
□ Re-programmable ROM via CLASP® 

technology allows generation of other 
frequencies 

□ TTL. MOS compatible 
□ IX Clock via fo/16output 
□ Crystal frequency output via fx and fx/4 

outputs 
□ Output disable via FENA 

XTAL/EXT1 1 IT 

XTAL/EXT2 23 

+ 5v 3 L 

fx 4 0 

GND 5 0 

fo/16 6 0 

FENA 7(j 

E 8f! 

^7~D16 fo 

b 15 A 

b 14 B 

a 13 c 
b 12 D 

b 11 ST 

bio fx/4 

_5 9 NC 

BLOCK DIAGRAM 

fo/16 

fx 

fx/4 

Reprinted by permission ot SMC Microsystems Corporation Copyright © 1980 
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General Description 

The Standard Microsystems COM 8046 is an en¬ 
hanced version of the COM 5046 Baud Rate 
Generator. It is fabricated using SMC's patented 
COPLAMOS® and CLASP* technologies and em¬ 
ploys depletion mode loads, allowing operation from 
a single +5v supply. 

The standard COM 8046 is specifically dedicated to 
generating the full spectrum of 16 asynchronous/ 
synchronous data communication frequencies for IX. 
16X and 32X UART/USRT/ASTRO/USYNRT devices. 

The COM 8046 features an internal crystal oscillator 
which may be used to provide the master reference 
frequency. Alternatively, an external reference may be 
supplied by applying complementary TTL level sig¬ 
nals to pins 1 and 2. Parts suitable for use only with an 
external TTL reference are marked COM 8046T. TTL 
outputs used to drive the COM 8046 or COM 8046T 
should not be used to drive other TTL inputs, as noise 
immunity may be compromised due to excessive 
loading. 

The reference frequency (fx) is used to provide two 
high frequency outputs: one at fx and the other at 
fx/4. The fx/4 output will drive one standard 7400 
load, while the fx output will drive two 74LS loads. 

The output of the oscillator/buffer is applied to the 
divider for generation of the output frequency f0. The 
divider is capable of dividing by any integer from 6 

to 2" + 1, inclusive. If the divisor is even, the output 
will be square: otherwise the output will be high 
longer than it is low by one fx clock period. The output 
of the divider is also divided internally by 16 and made 
available at the f0/16 output pin. The f0/16 output will 
drive one and the fD output will drive two standard 
7400 TTL loads. Both the f0 and fc/l6 outputs can be 
disabled by supplying a low logic level to the FENA 
input pin. Note that the FENA input has an internal 
pull-up which will cause the pin to rise to approx¬ 
imately Vcc if left unconnected. 

The divisor ROM contains 32 divisors, each 19 bits 
wide, and is fabricated using SMC's unique CLASPy 
technology. This process permits reduction of turn- 
around-time for ROM patterns. 

The five divisor select bits are held in an externally 
strobed data latch. The strobe input is level sensitive: 
while the strobe is high, data is passed directly 
through to the ROM. Initiation of a new frequency is 
effected within 3.5*s of a change in any of the five 
divisor select bits: strobe activity is not required. 
This feature may be disabled through a CLASP5 pro¬ 
gramming option causing new frequency initiation to 
be delayed until the end of the current fQ half-cycle 
All five data inputs have pull-ups identical to that 
of the FENA Input, while the strobe input has no 
pull-up. 

Description of Pin Functions 

Pin No. Symbol Name Function 

1 XTAL/EXT1 Crystal or 
External Input 1 

This input is either one pin of the crystal package or one polarity 
of the external input. 

2 XTAL/EXT2 Crystal or 
External Input 2 

This input is either the other pin of the crystal package or the other 
polarity of the external input. 

3 Vcc Power Supply + 5 volt supply 
4 fx fx Crystal/clock frequency reference output 
5 GND Ground Ground 
6 fo/16 f0/16 IX clock output 
7 FENA Enable A low level at this input causes the f0 and f0/16 outputs to be 

held high. An open or a high level at the FENA input enables the 
f0 and f0/16 outputs. 

8 E E Most significant divisor select data bit. An open at this Input Is 
equivalent to a logic high. 

9 NC NC No connection 
10 fx/4 fx/4 Vi crystal/clock frequency reference output. 
11 ST Strobe Divisor select data strobe. Data is sampled when this input is high, 

preserved when this input is low. 
12-15 D.C.B.A D.C.B.A Divisor select data bits. A = LSB. An open circuit at these inputs 

is equivalent to a logic high. 
16 fo fo 16X clock output 
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ELECTRICAL CHARACTERISTICS COM8046, COM8046T, COM8116, COM8116T, COM8126, 
COM8126T, COM8136, COM8136T, COM8146, COM8146T 

MAXIMUM GUARANTEED RATINGS' 
Operating Temperature Range . .(PC to 70*C 
Storage Temperature Range .- 55*C to ♦ 150*C 
Lead Temperature (soldering. 10 sec )..♦325*C 
Positive Voltage on any Pm. with respect to ground . +8.0V 
Negative Voltage on any Pm with respect to ground . .-0.3V 
‘Stresses above those listed may cause permanent damage to the device This is a stress rating only and 
functional operation of the device at these or at any other condition above those indicated in the operational 
sections of this specification is not impfied 

NOTE: When powering this device from laboratory or system power supplies, it is important that 
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies 
exhibit voltage spikes or '•glitches’* on their outputs when the AC power is switched on and off. 
In addition, voltage transients on the AC power line may appear on the DC output. If this possibility 
exists it is suggested that a clamp circuit be used. 

ELECTRICAL CHARACTERISTICS (Ta=0 C to 70’C. Vcc=*5Vr5%. unless Otherwise noted) 

Parameter Min. Typ- Max. Unit Comments 

D.C. CHARACTERISTICS 
INPUT VOLTAGE LEVELS 

Low-level, V* 0.8 V 
High-level. V« 

OUTPUT VOLTAGE LEVELS 
2.0 V excluding XTAL inputs 

Low-level. Va 0.4 V la = 1.6mA. for fx/4,f0/16 
0.4 V la« 3.2mA. for f0, f„fr 
0.4 V l<x = 0.8mA, for fx 

High-level. V<x 3.5 V lo*» —100,-A; for f«. Iom = — 50>*A 
INPUT CURRENT 

Low-level. In 
INPUT CAPACITANCE 

-0.1 mA V--GND, excluding XTAL inputs 

All inputs. C - 5 10 PF V -» GND. excluding XTAL inputs 
EXT INPUT LOAD 
POWER SUPPLY CURRENT 

8 10 Series 7400 equivalent loads 

Ice 50 mA 

A.C. CHARACTERISTICS T»- +25°C 
CLOCK FREQUENCY, f- 0.01 7.0 MHz XTAL/EXT. 50% Duty Cycle ±5% 

COM 8046. COM 8126. COM 8146 
0.01 5.1 MHz XTAL/EXT. 50% Duty Cycle ±5% 

COM 8116. COM 8136 

STROBE PULSE WIDTH. t,w 
INPUT SET-UP TIME 

150 DC ns 

t« 
INPUT HOLD TIME 

200 ns 

to* 50 ns 
STROBE TO NEW FREQUENCY DELAY 3.5 MS @ f. - 5.0 MHz 

APPENDIX C 289 

Copyrighted material 



Crystal Operation 
COM 8116 
COM 8136 

External Input Operation 
COM 8116/COM 8116T 
COM813E/COM8136T 

74XX—totem pole or open cdlector output (external 
pull-up resistor required) 

Crystal Operation 
COM 8126 
COM 8146 
COM 8046 

External Input Operation 
COM 8126/COM 8126T 
COM 8146/COM 8146T 
COM 8046/COM 8046T 

74XX 
TTL 

74XX 
TTL 

74XX—toiem pole or open collector output (external 
pull-up resistor required) 

For ROM re-programmmg SMC has a computer program avaiiaole whercOy the Customer 
need only supply the input frequency and me desired output frequences 

The ROM programming »$ automatically generated 

Crystal Specifications 
User must specify termination (pm. w*re. Other) 

Prefer: HC-18/U or HC-25/U 

Frequency — 5 0608 MHz AT cut 

Temperature range 0 C to 70 C 

Senes resistance 5011 

Senes Resonant 

Overall tolerance * 0i*« 

or as required 

Crystal manufacturers .Pirr.aiL.sti 
Northern Engineering Laboratories 
357 Beio.t Street 
Burlington. Wisconsin 53105 
(414) 763-3591 

Bulova Frequency Control Products 
61-20 Woodstde Avenue 
Woodside. New York 11377 
(212) 335-6000 

CTS Knights Inc. 
101 East Church Street 
Sandwich. Illinois 60548 
(815) 786-8411 
Crystek Crystals Corporation 
1000 Crystal Drive 
Fon Myers Flcr da 33901 
(813)936-2109 
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COM 8046 
COM 8046T 

Divisor 
Select 
EOCBA 

OODCO 
OOOOl 
OOOlO 
00011 
00100 
00101 
00110 
00111 

01001 
01010 
01011 
01 ICO 
01101 
omo 
01111 
10000 
10CO1 
10010 
10011 
10100 
10101 
10110 
10111 

mi* 
11C01 
11010 
11011 
11100 
11101 
11110 
11111 

Table 2 
REFERENCE FREQUENCY = 5 068800MHz 

Deseed 
Baud Clock 
Rate Factor 

Desired 
Frequency 

(KHz) Divisor 

Actual Actual 
Baud Frequency 
Rate (KHz) 

50 00 32X 
75 00 32X 

110 00 32X 
134 50 32X 
150 00 32X 
200 00 32X 
300 00 32X 
600 00 32X 

1200 00 32X 
1800 00 C2X 
2400 00 32X 
360000 32X 
4800 00 32X 
7200 00 32X 
9600 00 32X 

19200 00 32X 
50 00 16X 
75 00 16X 

110 00 16X 
134 50 16X 
150 00 16X 
300 00 16X 
600.00 16X 

1200 00 16X 
1800.00 16X 
2000 00 16X 
2400 00 16X 
3600 00 16X 
4800 00 16X 
7200 00 16X 
9603.00 16X 

192CO.OO 16X 

1 60000 
2 400CO 
3 52000 
4 30400 
4 80000 
6 40000 
9 60000 

38 40000 
57 6COOO 
76 0COOO 

115 2COOO 
153 60000 
230 40000 
307.20000 
614 40000 

0 80000 
1.20000 

215200 
2 40000 
4 80000 

1920000 
28 80000 
32 00000 
30 40000 

76 80000 
115 2CCOO 
153 60000 
3C7.20CO0 

3168 
2112 
1440 
1177 
1056 

792 
528 
264 
132 
80 
66 
44 
33 
22 
16 

8 
6336 
4224 
2880 
2355 
2112 
1056 
528 
264 
176 
159 
132 
88 
66 
44 
33 
16 

50 00 
75 00 

110 00 
134 58 
150 00 
200 00 
300 00 
600 00 

1200 00 
1800 00 
2400 00 
3600 CO 
4800 OO 
7200 00 
9900 00 

19800 00 
50 00 
75 00 

HOOO 
134 52 
150 00 
300 00 
600 00 

1200 00 
1800 OO 
2005 06 
2400 00 
3600 00 
4800 00 
7200 00 
9600 00 

19800 00 

lOO 16i 
2.401 
3.520CO0 
4 306542 
4 800000 
6 400000 
9 600000 

19 200000 
38 4COOCO 

i • I 
• Mi 

57 600000 
76 800000 

115 200000 
153 6COOOO 
230 4COOOO 
316 8COOOO 
633 6COOOO 

0 800000 
1 200000 
1 76COOO 
2152357 

Ml* 
4 800000 
9 600000 

19 20CO00 
28 8OO0CO 
32 081013 
38 400000 
57 600000 

•IMI* 
115 200000 
153 600000 
316 8COOOO 

Deviation 

0 0000% 
0 0000% 
0 0000% 
0 0591% 
00000% 
0 0000% 
0 0300% 
0 0000% 
0 0000% 
0 0000% 
00000% 
0 0000% 
0 0000% 
0 0000% 
3 1250% 
3.1250% 
0.0000% 

0 OOCO% 
00000% 
00166% 
0 0000% 
0 0000% 
0 0000% 
0 0000% 
0 0000% 
02532% 
0 0000% 
0 0000% 
0 0000% 
0 0000% 
0.0000% 

3.1250% 
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Circuit diagrams utilizing SMC products art included as a means of illustrat-ng typcai semiconductor applica¬ 
tions. consequently compete inlormation sufficient tor construction purposes it not necessarily given The 
information has been carefully checked and is bettered to be entirety reliable However, no responsibility ft 
assumed for inaccuracies Furthermore, such information does not convey to the purchaser of the semiconductor 
devices described any kcense under the patent rights of SMC or others SMC reserves the right to make Changes 
at any time m order to improve design and supply the best product possible 
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Appendix D 

ZAP Operating System 

file 3000 7323 
READY 
ASSN 

7324 0100 * 
7324 0110 * 
7324 0120 ♦THE FOLLOWING EQUATES ARE USED 
7324 0130 ♦AS OPERATING SYSTEM CONSTANTS 
7324 0140 ♦ 
7324 0150 ZERO EQU 0 
7324 0160 ONE EQU 1 
7324 0170 TWO EQU 2 
7324 0130 THREE EQU 3 
7324 0190 FOUR EQU 4 
7324 0200 FIVE EQU 5 
7324 0210 EIGHT EQU 8D 
7324 0220 ADDIS1 EQU 5 ♦MSDS ADDRESS DISPLAY PORT 
7324 0230 ADDIS2 EQU 6 ♦LSDS ADDRESS DISPLAY PORT 
7324 0240 DATDIS EGIJ 7 ♦DATA DISPLAY PORT 
7324 0250 EXECC EQU 16D ♦EXEC KEY 
7324 0260 NEXTC EQU 32D ♦NEXT KEY 
7324 0270 UART10 EQU 2 ♦UART I/O PORT 
7324 0280 UARTST EQU 3 ♦IJART STATUS PORT 
7324 0290 KEYPT EQU 0 ♦KEYBOARD INPUT PORT 
7324 0300 ♦ 
7324 0310 ♦ 
0000 0320 ST 0 
0000 0330 ♦ 
0000 0340 ♦ 
0000 0350 ♦COLD SETS THE OPERATING SYSTEM STACK POINTER 
0000 0360 ♦AND ENTERS THE COMMAND RECQGNIITION MODULE 
0000 0370 ♦ 
0000 0380 ♦ 
0000 31 C4 07 0390 COLD LD SPtSPSTRT ♦INITALIZE STACK POINTER 
0003 C3 40 00 0400 JP WARM01 
0006 0410 DS 2 
0008 C3 47 00 0420 WARM JP WARM1 ♦RST 1 OR WARM START 
OOOB 0430 DS 5 
0010 C3 C5 07 0440 RST2E JP RST2V ♦RST 2 TRANSFER 
0013 0450 DS 5 
0018 C3 C8 07 0460 RST3E JP RST3V ♦RST 3 TRANSFER 
001B 0470 DS 5 
0020 C3 CB 07 0480 RST4E JP RST4U ♦RST 4 TRANSFER 
0023 0490 DS 5 
0028 C3 CE 07 0500 RST5E JP RST50 ♦RST 5 TRANSFER 
0028 0510 DS 5 
0030 C3 D1 07 0520 RST6E JP RST6U ♦RST 6 TRANSFER 
0033 0530 DS 5 
0038 C3 D4 07 0540 RST7E JP RST7V ♦RST 7 TRANSFER 
0038 0550 DS 5 
0040 ED 73 DB 07 0551 WARM01 LD (SPLSAO) rSP 
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0044 C3 89 00 0552 JP UARM2 *G0 TO COMMAND RECOGNITION 
0047 0560 * 
0047 0570 * 
0047 0580 * 
0047 0590 *WARM START SAVES THE USERS REGISTERS AND 
0047 0600 CENTERS THE COMMAND RECOGNITION MODE WITH 
0047 0610 *FS DISPLAYED ON THE DATA AND ADDRESS DISPLAYS 
0047 0620 * 
0047 32 E3 07 0630 UARM1 LD (ASAV) rA ♦SAVE USERS A 
004A Et 0640 POP HL ♦GET USERS PC FROM STACK 
004B 22 DD 07 0650 LD (PCLSAV)fHL ♦SAVE USERS PC IN SAVE AREA 
004E F5 0660 PUSH AF 
004F El 0670 POP HL ♦GET USERS FLAGS 
0050 22 E7 07 0680 LD (ESAU)rHL ♦SAVE USERS FLAGS 
0053 DD 22 D7 07 0690 LD (IXLSAV)* IX ♦SAVE USERS IX 
0057 FD 22 D9 07 0700 LD (IYLSAV)* IY ♦SAVE USERS IY 
005B ED 73 DB 07 0710 LD (SPLSAV ) f SP ♦SAVE USERS SP 
005F ED 57 0720 LD A* I ♦SAVE USERS I 
0061 32 DF 07 0730 LD (ISAV)fA 
0064 ED 5F 0740 LD AfR ♦SAVE USERS R 
0066 32 EO 07 0750 LD (RSAV)fA 
0069 21 E4 07 0760 LD HLfBSAV 
006C 70 0770 LD (HL)fB ♦SAVE USERS B 
006D 23 0780 INC HL 
006E 71 0790 LD (HL)fC ♦SAVE USERS C 
006F 23 0800 INC HL 
0070 72 0810 LD (HL)fD ♦SAVE USERS D 
0071 23 0820 INC HL 
0072 73 0830 LD (HL)fE ♦SAVE USERS E 
0073 08 0840 EX AFfAF ♦SAVE ALTERNATE REGISTERS 
0074 F5 0850 PUSH AF 
0075 32 EB 07 0860 LD (AASAV)fA ♦SAVE ALT A 
0078 22 E9 07 0870 LD (ALSAV)fHL ♦SAVE ALT H&L 
007B El 0880 POP HL 
007C 22 EF 07 0890 LD (AESAV)fHL ♦SAVE ALT FLAGS 
007F 21 EC 07 0900 LD HLfABSAV 
0082 70 0910 LD (HL)fB ♦SAVE ALT B 
0083 23 0920 INC HL 
0084 71 0930 LD (HL)fC ♦SAVE ALT C 
0085 23 0940 INC HL 
0086 72 0950 LD (HL)fD ♦SAVE ALT D 
0087 23 0960 INC HL 
0088 73 0970 LD (HL)fE ♦SAVE ALT E 
0089 0980 ♦ 
0089 0990 * 
0089 1000 ♦COMMAND RECOGNITION MODULE 
0089 1010 * 
0089 CD FI 00 1020 WARM2 CALL CLDIS ♦CLEAR DISPLAY 
008C 3E FF 1030 LD A r255D ♦DISPLAY FFFF FF 
008E D3 05 1040 OUT ADDIS1 
0090 D3 06 1050 OUT ADDIS2 
0092 D3 07 1060 OUT DATDIS 
0094 CD 03 01 1070 CALL KEYIN ♦GET INPUT CHARACTER 
0097 06 40 1080 LD BfMEM 
0099 B8 1090 CP B 
009A CA FI 01 1100 JP ZfMEMORY ♦JUMP IF MEMORY REQUEST 
009D 04 1110 INC B 
009E B8 1120 CP B 
009F CA 4B 02 1130 JP ZfREGIST ♦JUMP IF REGISTER REQUEST 
OOA2 04 1140 INC B 
OOA3 B8 1150 CP B 
00A4 CA 10 03 1160 JP ZfGOREQ 
00A7 C3 89 00 1170 JP UARM2 
OOAA 1180 * 
OOAA 1190 MEM EQU 64D ♦MEMORY KEY 
OOAA 1200 ♦ 
OOAA 1210 * 
OOAA 1220 ♦RESTART RESTORES THE USERS REGISTERS 
OOAA 1230 ♦AND RETURNS CONTROL TO THE ADDRESS 
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OOAA 1240 ♦SPECIFIED IN THE PC SAVE LOCATION IN THE 
OOAA 1250 ♦REGISTER SAVE AREA 
OOAA 1260 ♦ 
OOAA 3A EC 07 1270 RESTRT LD A?(ABSAO) ♦RESTORE ALT REGISTERS 
OOAD 47 1280 LD Br A 
OOAE 3A ED 07 J 290 LD A?(ACSAV) 
OOB1 4F 1300 LD Ct A 
00B2 3A EF 07 1310 LD A* < ADSAU) 
OOB5 57 1320 L.D D? A 
00B6 3A EF 07 1330 LD A?(AESAY) 
00B9 5F 1340 LD E> A 
OOBA 3A FO 07 1350 LD A r(AFSAV) 
OOBD 6F 1360 LD L r A 
OOBE E5 1370 PUSH HL 
OOBF FI 1380 POP AF 
OOCO 3A EB 07 1390 LD A r (AASAY > 
OOC3 2A E9 07 1400 LD HLr (ALSAY) 
OOC6 D9 1410 EXX 
00C7 FD 2A D9 07 1420 LD IYr(IYLSAY) ♦RESTORE IY 
OOCB DD 2A D7 07 1430 LD IX r(IXLSAY) ♦RESTORE IX 
OOCF 21 DF 07 1440 LD HLrISAY 
OOD2 7E 1450 LD A r < HL) 
OOD3 ED 47 1460 LD IrA 
00B5 23 1470 INC HL 
00 D6 7E 1480 LD A r(HL) 
OOD7 ED 4F 1490 LD Rr A 
00D9 21 E3 07 1500 LD HLrASAY 
OODC 7E 1510 LD A ?(HL) ♦RESTORE A 
OODD 23 1520 INC HL 
OODE 46 1530 LD Br (HL) ♦RESTORE B 
OODF 23 1540 INC HL 
OOEO 4E 1550 LD Cr (HL) ♦RESTORE C 
OOEl 23 1560 INC HL 
00E2 56 1570 LD Dr(HL) ♦RESTORE D 
OOE3 23 1580 INC HL 
00E4 5E 1590 LD Er(HL) ♦RESTORE E 
00E5 ED 7B DB 07 1600 LD SPr(SPLSAY) ♦RESTORE STACK POINTER 
OOE9 2A DD 07 1610 LD HLr(PCLSAY) ♦REPLACE PC ON STACK 
OOEC E5 1620 PUSH HL 
OOED 2A El 07 1630 LD HLr(LSAY) ♦RESTORE HSL 
OOFO C9 1640 RET ♦RETURN TO USER 
OOF1 1650 ♦ 
00F1 1660 ♦ ♦ 
00F1 1670 ♦ 
00F1 1680 ♦CLDIS CLEARS THE DATA AND ADDRESS DISPLAYS 
OOF1 1690 ♦SETS THE KEYBOARD BUFFERS AND CLEARS THE 
00F1 1700 ♦KEYBOARD FLAGS 
OOF 1 1710 ♦ 
00F1 3E 00 1720 CLDIS LD A r ZERO 
OOF3 32 FI 07 1730 LD (KFLAGS)rA ♦CLEAR FLAGS 
OOF6 32 F2 07 1740 LD (KDATA1> rA ♦CLEAR BUFFER 
OOF9 32 F3 07 1750 LD (KDATA2)rA 
OOFC D3 07 1760 OUT DATDIS ♦CLEAR DATA FIELD DISPLAY 
OOFE D3 05 1770 OUT ADDIS1 ♦CLEAR ADDRESS FIELD DISPLAY 
0100 D3 06 1780 OUT ADDIS2 
0102 C9 1790 RET 
0103 1800 ♦ 
0103 1810 ♦ 
0103 1820 ♦KEYIN WAITS FOR INPUT FROM THE KEYBOARD 
0103 1830 ♦UPON DETECTING DATA AT THE INPUT PORT (0) 
0103 1840 ♦01A THE STROBE BIT (7) BEING SET THE DATA 
0103 1850 ♦ IS INPUT?THE STROBE BIT CLEARED? AND THE INPUT 
0103 1860 ♦CHARACTER IS RETURNED TO THE USER IN A 
0103 1870 ♦ 
0103 1880 ♦ 
0103 DB 00 1890 KEYIN IN KEYPT ♦INPUT DATA 
0105 CB 7F 1900 BIT 7 r A 
0107 CA 03 01 1910 JP ZrKEYIN ♦LOOP IF NO DATA 
010A 32 F4 07 1911 LD (TEMP)rA ♦SAYE CHARACTER 
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010D DB 00 1912 KEYIN1 IN KEYPT 
010F CB 7F 1913 BIT 7, A 
0111 C2 OD 01 1914 JP NZtKEYIN1 ♦JUMP IF STROBE PRESENT 
0114 3A F4 07 1915 LD Ar(TEMP) 
0117 CB BF 1920 RES 7,A ♦CLEAR STROBE 
0119 C9 1930 RET 
011A 1940 * 
011A 1950 * 
011A 1960 *KFLG02 SETS THE NEXT(O) AD NO DATA(2) KEYBOARD FLAGS 
011A 1970 ♦ 
011A 1980 ♦ 
011A 21 FI 07 1990 KFL602 LD HLrKFLAGS 
01 ID CB C6 2000 SET Or(HL) ♦SET NEXT FLAG 
01 IF CB D6 2010 SET 2r(HL) 
0121 El 2020 POP HL ♦CLEAR RETURN 
0122 C9 2030 RET 
0123 2040 ♦ 
0123 2050 ♦ 
0123 2060 *KFLGO SETS THE NEXT(0) KEYBOARD FLAG 
0123 2070 * 
0123 2080 ♦ 
0123 21 FI 07 2090 KFLGO LD HLrKFLAGS 
0126 CB C6 2100 SET Or(HL) ♦SET NEXT FLAG 
0128 El 2110 POP HL ♦CLEAR RETURN 
0129 C9 2120 RET 
012A 2130 * 
012A 2140 * 
012A 2150 ♦KFLG12 SETS THE EXEC(l) AND NO DATA(2) KEYBOARD FLAG 
012A 2160 ♦ 
012A 2170 ♦ 
012A 21 FI 07 2180 KFLG12 LD HLrKFLAGS 
012D CB CE 2190 SET lr(HL) 
012F CB D6 2200 SET 2r (HL) 
0131 El 2210 POP HL ♦CLEAR RETURN 
0132 C9 2220 RET 
0133 2230 ♦ 
0133 2240 * 
0133 2250 ♦KFLG1 SETS THE EXEC (1) KEYBOARD FLAG 
0133 2260 * 
0133 2270 * 
0133 21 FI 07 2280 KFLG1 LD HLrKFLAGS 
0136 CB CE 2290 SET lr(HL) ♦SET EXEC FLAG 
0138 El 2300 POP HL ♦CLEAR RETURN 
0139 C9 2310 RET 
013A 2320 ♦ 
013A 2330 ♦ 
013A 2340 * 
013A 2350 ♦ONECAR INPUTS ONE CHARACTER FOLLOWED BY A NEXT OR EXEC 
013 A 2360 ♦FROM * fHE KEYBOARDr VALIDATES ITr AND RETURNS IT TO 
013A 2370 ♦THE USER IN KBATA2 
013A 2380 ♦ 
013A 2390 ♦ 
013A CD FI 00 2400 ONECAR CALL CLDIS ♦CLEAR DISPLAYrBUFFERr&FLAGS 
013D CD 03 01 2410 CALL KEYIN ♦GET CHARACTER 
0140 D3 07 2420 OUT DATDIS ♦DISPLAY CHARACTER 
0142 CD 5D 01 2430 CALL CARCK1 ♦CHECK CHARACTER 
0145 CB 77 2440 BIT 6 r A 
0147 C2 51 01 2450 JP NZrONECAl ♦JUMP IF SHIFT 
014A D6 10 2460 SUB 16D ♦CHARACTER=0-F 
014C F2 3A 01 2470 JP PrONECAR ♦JUMP IF NOT 0-F 
014F C6 10 2480 ADD 16D 
0151 32 F3 07 2490 0NECA1 LD (KDATA2)rA ♦SAVE CHARACTER 
0154 CD 03 01 2500 CALL KEYIN ♦GET NEXT CHARACTER 
0157 CD 6A 01 2510 CALL CARCK2 
015A C3 51 01 2520 JP 0NECA1 ♦GO DO AGAIN NOT EXEC OR NEXT 
015D 2530 ♦ 
015D 2540 ♦ 
015D 2550 ♦CARCK1 CHECKS FOR A NEXT OR EXEC ON AN INITIAL 
015D 2560 ♦CHARACTER• IF NEXT THE i ROUTINE RETURNS TO CALLER VIA 
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015D 2570 ♦KFLG02. IF EXEC THE ROUTINE RETURNS TO THE CALLER 
0150 2580 ♦VIA KFLG12 
0150 2590 * 

0150 2600 ♦ 
0150 06 20 2610 CARCK1 LD BrNEXTC ♦CHECK FOR NEXT 
015F B8 2620 CP B 
0160 CA 1A 01 2630 JP Z?KFLG02 ♦IF NEXT JUMP 
0163 06 10 2640 LD BrEXECC ♦CHECK FOR EXEC 
0165 88 2650 CP B 
0166 CA 2A 01 2660 JP Z fKFLG12 ♦IF EXEC JUMP 
016? C9 2670 RET ♦ELSE RETURN 
016 A 2630 ♦ 
016A 2690 ♦ 
0.16 A 2700 *CARCK2 CHECKS FOR NEXT OR EXECr SETS THE PROPER 
016 A 2710 ♦FLAG VIA KFLGO OR KFLG1 AND RETURNS TO THE USER 
016 A 2720 ♦ IF NOT NEXT OR EXEC THE ROUTINE RETURNS TO 
016A 2730 ♦THE ORIGINATOR OF THE REQUEST 
016 A 2740 ♦ 
016A 2750 ♦ 
016A 06 20 2760 CARCK2 LD BrNEXTC ♦CHECK FOR NEXT 
016C 88 2770 CP B 
0160 CA 23 01 2730 JP ZtKFLGO ♦IF NEXT JUMP 
0170 06 10 2790 LD BrEXECC ♦CHECK FOR EXEC 
0172 88 2800 CP B 
0173 CA 33 01 2810 JP ZrKFLGl 
0176 C9 2820 RET 
0177 2830 ♦ 
0177 2840 ♦ 
0177 2850 ♦TWOCAR INPUTS 2 CHARACTERS FROM THE KEYBOARD 
0177 2860 ♦FOLLOWED BY A NEXT OR EXEC AND RETURNS THEM TO THE 
0177 2870 ♦USER IN KDATA2 
0177 2880 ♦ 
0177 2890 ♦ 
0177 CD AO 01 2900 TWOCAR CALL CLDAT ♦CLEAR BUFFERtFLAGSrAND DISPLAY 
017A CD 03 01 2910 CALL KEY IN ♦GET CHARACTER 
017D CD 5D 01 2930 CALL CARCK1 ♦CHECK FOR NEXT OR EXEC 
0180 06 10 2940 TW0CA1 SUB 160 ♦CHARACTER=0-F 
0182 F2 77 01 2950 JP PrTWOCAR ♦JUMP IF NOT 0-F 
0185 C6 10 2960 ADD 16D 
0137 21 F 3 07 2970 LD HLrKDATA2 
018A 46 2980 LD B r <HL> ♦GF.I OLD DATA 
0183 CD 00 2990 RLC B 
018D CD 00 3000 RLC B 
018F CD 00 3010 RLC B 
0191 CD 00 3020 RLC B 
0193 80 3030 ADD ArB ♦A=OLD&NEW 
0194 Do 07 3031 OUT DATDIS ♦DISPLAY INPUT 
0196 77 3040 LD (HL)rA ♦SAVE NEW DATA 

0197 CD 03 01 3050 CALL KEYIN ♦GET NEXT CHARACTER 
019A CD 6 A 01 3060 CALL CARCK2 ♦CHECK FOR TERMINATION 

019D C3 80 01 3070 JP TW0CA1 ♦JUMP IF NO TERMINATION 

01 AO 3080 ♦ 
01 AO 3090 ♦ 
01 AO 3100 ♦CLDAT CLEARS THE INPUT BUFFERfFLAGS* AND DATA DIS 

01 AO 3110 ♦ 
01 AO 3120 ♦ 
01 AO 3E 00 3130 CLDAT LD AfZERO 

01A2 32 FI 07 3140 LD (KFLAGS)»A ♦CLEAR FLAGS 
01A5 32 F3 07 3150 LD (KDATA2)rA ♦CLEAR BUFFER 
01A8 32 F2 07 3160 LD (KDATA1> rA 
01AB C9 3180 RET 
01 AC 3E 00 3181 CLADD LD ArZERO ♦CLEAR ADDRESS DISPLAY 

01AE D3 05 3182 OUT ADDIS1 
0130 D3 06 3183 OUT ADDIS2 
0132 C9 3184 RET 
01B3 3190 ♦ 
0183 3200 * 
01B3 3210 ♦FORCAR INPUTS FOUR CHARACTERS FROM THE KEYBOARD 
01B3 3220 ♦FOLLOWED BY A NEXT OR EXEC AND RETURNS THEM 
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01B3 3230 *T0 THE USER IN KDATA1 AND KDATA2 
01B3 3240 * 
01B3 3250 * 
01B3 CD AO 01 3260 FORCAR CALL CLDAT ♦CLEAR FLAGS AND BUFFER 
01B6 CD 03 01 3270 CALL KEYIN ♦GET INPUT CHARACTER 
01B? CD 5D 01 3280 CALL CARCK1 ♦CHECK FOR NEXT OR EXEC 
OIBC D6 10 3290 F0RCA1 SUB 16D ♦CHARACTER=0-F 
OIBE F2 B3 01 3300 JP PfFORCAR ♦JUMP IF NOT 0-F 
01C1 C6 10 3310 ADD 16D 
01C3 32 F4 07 3320 LD (TEMP)fA ♦SAVE CHARACTER 
01C6 3A F2 07 3330 LD Af(KDATA1) ♦A=MSD 
01C9 21 F3 07 3340 LD HL f KDATA2 
01CC ED 67 3350 RRD ♦ADJUST DATA FOR NEW CHARACTER 
01CE 07 3360 RLCA 
01CF 07 3370 RLCA 
01 DO 07 3380 RLCA 
01D1 07 3390 RLCA 
01D2 E6 FO 3400 AND 240D ♦MASK OFF OLD IDGIT 
01D4 21 F4 07 3410 LD HLrTEMP 
01D7 86 3420 ADD Af(HL) ♦ADD IN NEU DIGIT 
01D8 2A F3 07 3430 LD HLr(KDATA2) ♦SAVE NEU LSDS 
01DB 22 F2 07 3440 LD (KDATADfHL ♦SAVE NEU MSDS 
01DE 32 F3 07 3450 LD (KDATA2)fA ♦SAVE NEU LSDS 
01E1 D3 06 3460 OUT ADDIS2 ♦DISPLAY LSDS 
01E3 3A F2 07 3470 LD Af(KDATAI) 
01E6 D3 05 3480 OUT ADDIS1 
01E8 CD 03 01 3490 CALL KEYIN ♦GET NEXT CHARACTER 
01EB CD 6A 01 3500 CALL CARCK2 ♦CHECK FOR NEXT OR EXEC 
01 EE C3 BC 01 3510 JP F0RCA1 ♦JUMP IF NOT NEXT OR EXEC 
01F1 3520 ♦ 
01F1 3530 ♦ 
01F1 3540 ♦ 
01F1 3550 ♦ 
01F1 3560 ♦MEMORY INPUTS AN ADDRESS FROM THE KEYBOARD FOLLOUED 
01F1 3570 ♦BY DATA AS DEFINED BY THE SEQUENCE 
01F1 3580 ♦ MEM(ADDRESS)NEXT f(DATA)NEXT»..(DATA >EXEC 
01F1 3590 ♦IF DATA IS TO BE DISPLAYED 
01F1 3600 ♦ MEM(ADDRESS)NEXTfNEXT..♦.NEXTfEXEC 
01F1 3610 ♦EXEC 1 WILL RETURN CONTROL TO THE COMMAND RECOGNITION 
01F1 3620 ♦ 
01F1 3630 ♦ 
01F1 3E 00 3640 MEMORY LD AfZERO ♦CLEAR MEMORY BASE ADDRESS 
01F3 32 F6 07 3650 LD (MBASEDfA 
01F6 32 F7 07 3660 LD (MBASE2)fA 
OIF? CD AC 01 3661 CALL CLADD 
01FC CD B3 01 3670 CALL FORCAR ♦GET BASE ADDRESS 
OIF F 3A FI 07 3680 LD Af(KFLAGS) 
0202 CB 4F 3690 BIT 1 F A 
0204 C2 89 00 3700 JP NZ f UARM2 ♦JUMP IF EXEC FLAG SET 
0207 3A F2 07 3710 LD Af(KDATA1) ♦SAVE MEMORY ADDRESS 
020A 32 F7 07 3720 LD (MBASE2)fA 
020D 3A F3 07 3730 LD Af(KDATA2) 
0210 32 F6 07 3740 LD (MBASE1)fA 
0213 2A F6 07 3750 LD HL f(MBASE1) ♦SET MEM BASE ADDRESS 
021A 7E 3760 MEM1 LD Af(HL) ♦GET MEMORY DATA 
0217 D3 07 3770 OUT DATDIS ♦DISPLAY MEMORY DATA 
0219 CD 77 01 3780 CALL TWOCAR ♦GET NEU DATA 
021C 3A FI 07 3790 LD Af(KFLAGS) 
02 IF CB 57 3800 BIT 2 f A 
0221 C2 43 02 3810 JP NZ f MEM2 ♦JUMP IF NO DATA 
0224 2A F6 07 3820 LD HLf(MBASEI) ♦GET MEM ADDRESS 
0227 3A F3 07 3830 LD Af (KDATA2) ♦GET NEU DATA 
022A 77 3840 LD (HL)fA ♦REPLACE OLD DATA 
022B 3A FI 07 3850 LD Af(KFLAGS) 
022E CB 4F 3860 BIT IfA 
0230 C2 89 00 3370 JP NZ fUARM2 ♦JUMP IF EXEC FLAG SET 
0233 2A F6 07 3380 MEM12 LD HLf(MBASEI) ♦INC BASE MEM ADD 
0236 23 3390 INC HL 
0237 22 F6 07 3900 LD (MBASEI)fHL 
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023A 7D 3901 LD AfL 
023B D3 06 3902 OUT ADDIS2 
023D 7C 3903 LD ArH 
023E D3 05 3904 OUT ADDIS1 
0240 C3 16 02 3910 JP MEM1 
0243 CB 4F 3920 MEM2 BIT If A 
0245 G2 89 00 3930 JP NZfUARM2 ♦JUMP IF EXEC FLAG SET 
0248 C3 33 02 3940 JP MEM12 
024B 3950 * 

024B 3960 * 
024B 3970 * 
024B 3980 ♦ 
024B 3990 *REGIST INPUTS A REGISTER FROM THE KEYBOARD FOLLOWED BY 
024E< 4000 ♦DATA AS DEFINED BY THE SEQUENCE 
024B 4010 ♦ REG(INIT REG)NEXT f(DATA)NEXT♦.♦(DATA)EXEC 
024B 4020 ♦REGISTER SEQUENCE IS IXflYfSPfPCfltRfHfLfAfBfCfDfEfFf 
024B 4030 ♦ALrAH fAA rAB yAC yAD yAE y i AF 
024B 4040 ♦IF ONLY DATA IS TO BE DISPLAYED 
024B 4050 ♦ REG(INIT REG)NEXT yNEXT«♦.EXEC 
024B 4060 ♦EXEC WILL RETURN CONTROL TO THE COMMAND RECOGNITION 
024B 4070 ♦ 
024B 4080 ♦ 
024B CD 3A 01 4090 REGIST CALL ONECAR ♦GET INITIAL CHARACTER 
024E 3A FI 07 4100 LD Af(KFLAGS) 
0251 CB 57 4110 BIT 2f A 
0253 C2 89 00 4120 JP NZfWARM2 ♦JUMP IF NO DATA FLAG SET 
0256 3A F3 07 4130 LD Af(KDATA2) ♦GET BASE REGISTER 
0259 32 F5 07 4140 REGIO LD (TEMP2)f A 
025C CB 77 4141 BIT 6 f A ♦CHECK FOR SHIFT 
025E C2 CC 02 4142 JP NZfREGISA ♦JUMP IF SHIFT KEY SET 
0261 FE 06 4143 CP 6 
0263 F2 6C 02 4144 JP PfREGIl ♦JUMP IF EIGHT BIT REGISTER 
0266 3D 4145 DEC A 
0267 3D 4146 DEC A 
0268 87 4147 ADD A ♦I=(I-2)^2 
0269 C3 6E 02 4148 JP REG 12 
026C 3C 4149 REGI1 INC A 
026B 3C 4150 INC A 
026E 32 F8 07 4151 REGI2 LD (REGINX)fA ♦SAVE INDEX 
0271 3A F5 07 4152 LD Af(TEMP2) 
0274 FE 10 4153 CP 10H 
0276 FA 83 02 4154 JP MrREGI2A 
0279 CB 77 4155 BIT 6 f A 
027B C2 83 02 4157 JP NZ fREGI2A ♦JUMP IF BIT 6 SET 
027E 3E 48 4158 LD Af 48H 
0280 32 F5 07 4159 LD (TEMP2)fA 
0283 D3 07 4160 REGI2A OUT DATBIS ♦DISPLAY REGISTER SELECT 
0285 3A F8 07 4210 LD Af(REGINX) 
0288 FE 08 4220 CP EIGHT 
028A FA D6 02 4230 JP MfXYSP ♦JUMP IF 16 BIT REG 
028D 21 D7 07 4240 LD HLfIXLSAV ♦GET BASE ADD 
0290 4F 4250 LD Cf A 
0291 06 00 4260 LD B f ZERO 
0291 09 4270 ADD HLfBC 

0294 22 F6 07 4280 LD (MBASEl)fHL ♦SAUE REG SAVE ADD 
0297 7E 4290 LD Af(HL) ♦GET REGISTER DATA 
0298 D3 06 4300 OUT ADDIS2 ♦DISPLAY DATA 
029A 78 4310 LD A f B 
029B D3 05 4320 our ADDIS1 
029D CD 77 01 4330 CALL TUQCAR ♦GET NEW DATA 
02AO 3A FI 07 4340 LD Ar(KFLAGS) 
02A3 CB 57 4350 BIT 2 f A 
02A5 C2 B7 02 4360 JP NZfREG13 ♦JUMP IF NO DATA 
02A8 2A F6 07 4390 LD HLf(MBASE1) 
02AB 3A F2 07 4400 LD Af(KDATA1) ♦GET NEW DATA 
02AE 77 4410 LD (HL)fA ♦REPLACE OLD DATA 
02AF 3A FI 07 4411 LD Af(KFLAGS) 
02B2 CB 4F 4412 BIT 1 f A 
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02B4 C2 89 00 4413 JP NZ rWARM2 ♦JUMP IF EXEC FLAG SET 
02B7 3A F5 07 4420 REGI3 LD Ar < TEMP2) ♦INCREMENT INDEX 
02BA 3C 4421 INC A 
02BB 32 F5 07 4422 LD (TEMP2)r A 
02BE 3A F8 07 4423 LD A.(REGINX) ♦INCREMENT INDEX 
02C1 3C 4430 INC A 
02C2 FE 1A 4440 CP 1 AH 
02C4 FA 6E 02 4450 JP MrREG12 ♦JUMP IF INDEX .LT• 1A 
02C7 3E 02 4460 REGI4 LD Ar TWO ♦SET INITIAL INDEX 
02C9 C3 59 02 4470 JP REGIO 
02CC 06 48 4430 REGISA SUB 48H 
0*2 C£ FA 4B 02 4490 JP MrREGIST ♦JUMP IF INVALID REGISTER 
02D1 C6 12 4500 ADD 12H 
02D3 C3 6E 02 4510 JP REG 12 
02D6 21 D7 07 4520 XYSP LD HLrIXLSAV 
02D9 4F 4530 LD CrA 
02BA 06 00 4540 LD Br ZERO 
02 BC 09 4550 ADD HLrBC ♦HL=REG SAVE ADDRESS 

02DD 22 F6 07 4560 LD (MBASE1> rHL 
02E0 7E 4570 LD Ar(HL) ♦DISPLAY REGISTER DATA 
02E1 D3 06 4580 OUT ADDIS2 
02E3 23 4590 INC HL 
02E4 7E 4600 LD A r(HL) 
02E5 D3 05 4610 OUT ADDIS1 
02E7 3A F8 07 4620 LD Ar(REGINX) 
02EA 3C 4630 INC A 
02EB 32 F8 07 4640 LD (REGINX)rA 
02EE CD B3 01 4650 CALL FORCAR ♦GET NEW DATA 
02F1 3A FI 07 4660 LD Ar(KFLAGS) 
02F4 CB 57 4670 BIT 2 r A 
02F6 C2 08 03 4680 JP NZrREGI5 ♦JUMP IF NO DATA 
02F9 2A F6 07 4710 LD HL r(MBASE1) ♦REPLACE OLD DATA 
02FC 3A F3 07 4720 LD Ar(KDATA2) 
02FF 77 4730 LD (HL)rA 
0300 3A F2 07 4740 LD A r(KDATA1) 
0303 23 4750 INC HL 
0304 77 4760 LD (HL)rA 
0305 3A FI 07 4761 LD Ar(KFLAGS) 
0308 CB 4F 4762 REG 15 BIT 1 r A 
030A C2 89 00 4763 JP NZ r WARM2 ♦JUMP IF EXEC FLAG SET 
030D C3 B7 02 4770 JP REGI3 
0310 4780 ♦ 
0310 4790 ♦ 
0310 4800 ♦ 
0310 4810 ♦ 
0310 4820 *G0 RESETS THE USERS RESTART ADDRESS IN THE 
0310 4330 ♦REGISTER SAVE AREA AND EXITS TO THE RESTART 
0310 4840 ♦MODULE 
0310 4850 ♦ 
0310 4860 ♦ 
0310 CD AC 01 4870 GOREQ CALL CLADD 
0313 CD B3 01 4871 CALL FORCAR ♦GET RESTART ADDRESS 
0316 3A FI 07 4880 LD Ar(KFLAGS) 
0319 CB 57 4890 BIT 2 r A 
031B C2 89 00 4900 JP NZ rWARM2 ♦IF NO DATA EXIT 
031E 3A F3 07 4910 LD Ar(KDATA2) ♦SAVE NEW ADDRESS 
0321 32 00 07 4920 LD (PCLSAV)r A 
0324 3A F2 07 4930 LD A r(KDATA1) 
0327 32 DE 07 4940 LD (PCHSAV)rA 
032A C3 AA 00 4950 JP RESTRT 
032D 4960 ♦ 
032B 4970 ♦ 
032D 4980 ♦ 
032D 4990 ♦UATST IS A UART LOOP CHECK ROUTINE 
0320 5000 ♦IT UTILIZES A LOOP WITH THE OUTPUT 
0320 5010 ♦PORT 1 PATCHED TO THE INPUT PORT 
032D 5020 ♦ IF AN ERROR IS DETECTED THE ERROR IS 
032D 5030 ♦DISPLYED ON THE ADDRESS DISPLAY AND 
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032D 5040 *THE CHARACTER IS DISPLAYED ON THE DATA DISPLAY 
03 2D 5050 *THE OUTPUT CHARACTE IS DISPLAYED ON THE MSD 
032D 5060 ♦OF THE ADDRESS DISPLAY 
032D 5070 ♦ 
032D 06 00 5080 UATST LD ByZERO ♦ 
032F DB 03 5090 IN UARTST ♦GET STATUS 
0331 CB 47 5100 BIT 0>A 
0333 CA 53 03 5110 JP ZfUAERI ♦JUMP IF XMIT BUFFER NOT EMPTY 
0336 78 5120 UATSTO LD ArB ♦GET OUTPUT CHARACTER 
0337 B3 05 5130 OUT ADDIS1 
033? D3 02 5140 OUT UART10 
033B DB 03 5150 UATST1 IN UARTST 
033D CB 4F 5160 BIT lyA 
033F CA 3B 03 5170 JP ZrUATSTl ♦JUMP IF NO DATA AVAILABLE 
0342 E6 1C 5130 AND 1CH 
0344 C2 53 03 5190 JP NZrlJAERl ♦JUMP IF PARITY ERROR 
0347 DB 02 5240 IN UARTIO ♦GET INPUT CHARACTER 
0349 D3 07 5250 OUT BATDI3 
034B B8 5260 CP B 
034C C2 5A 03 5270 JP NZfUAER2 ♦JUMP IF INPUT♦NE♦OUTPUT 
034F 04 5280 INC B 
0350 C3 36 03 5290 JP UATSTO 
0353 D3 06 5300 UAER1 OUT ADDIS2 ♦DISPLAY UART STATUS 
0355 DB 02 5310 IN UARTTO ♦GET INPUT DATA 
0357 D3 07 5320 OUT DATDIS 
0359 76 5330 HALT 
035A 3E OF 5340 UAER2 LD A»OFH 
035C ED 79 5350 OUT (ADDIS2)fA 
035E 76 5360 HALT 
035F 5370 * 
035F 5380 * 
035F 5390 ♦TTYINPUT DRIVER 
035F 5400 ♦INPUTS DATA INTO THE SPECIFIED BUFFER 
035F 5410 ♦INPUT IS TERMINATED WHEN A CARRIAGE RETURN 
035F 5420 ♦IS DETECDED OR THE NUMBER OF SPECIFIED CHARACTERS 
035F 5430 ♦HAVE BEEN ! INPUTED FROM THE TRANSMITDING DEVICE 
035F 5440 ♦ 
035F 2A F? 07 5450 TTYINP LD HLr(TTYIBF) ♦GET BUFFER ADDRESC 
0362 3A FD 07 5460 LD Ay(TTYIC) ♦GET NYMBER OF CHARACTERS 
0365 47 5470 LD By A 
0366 DB 03 5480 TTYIN1 IN UARTST ♦GET UART STATUS 
0368 CB 4F 5490 BIT 11A 
036A CA 66 03 5500 JP ZrTTYINl : *JUMP IF NO DATA 
036D E6 1C 5510 AND 1CH 
036F C2 9B 03 5520 JP NZfTTYERR ♦JUMP IF PARITY ERROR 
0372 DB 02 5570 IN UARTIO ♦GET INPUT CHARACTER 
0374 77 5580 LD (HL)rA ♦SAFE CHARACTER IN USERS BUF 
0375 FE OD 5590 CP ApODH 
0376 CA 91 03 5600 JP ZfTTYIN2 ♦JUMP IF CARRIAGE RETURN 
0379 3E 01 5810 LD ArONE ♦SET OUTPUT CHARACTER COUNT 
037B 22 FB 07 5620 TTYIN3 LD (TTYOBF)yHL ♦SET OUTPUT BUFFE ADDRESS 
037E 32 FE 07 5630 LD (TTYOC)y A 
0381 78 5631 LD AyB 
0382 32 F4 07 5632 LD (TEMP)yA 
0385 CD 9E 03 5640 CALL TTYOUT ♦GO OUTPUT CHARACTER 
0388 3A F4 07 5641 LD Ay (TEMP) 
038B 47 5642 LD ByA 
038C 05 5650 DEC B 
038D C8 5660 RET Z ♦RETURN IF ALL CHARACTERS IN 
038E C3 66 03 5670 JP TTYIN1 
0391 21 9C 03 5680 TTYIN2 LD HLy LF ♦GET LINE FEED ADDRESS 
0394 3E 02 5690 LD AyTWQ 
0396 06 01 5700 LD ByONE 
0398 C3 7B 03 5710 JP TTYIN3 
039B C9 5720 TTYERR RET ♦RETURN WITH ERROR CODE IN 
039C OD OA 5730 LF DB ODHyOAH ♦LINE FEED/CARRIAGE RETURN 

039E 5740 ♦ 
039E 5750 ♦TTY OUTPUT DRIVER 
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039E 
039E 
039E 
039E 

07C4 
07C4 
07C4 

07D7 
07D7 
07D7 
07D7 

00 
07D8 

00 
07D9 

00 
07DA 

00 
07DB 

00 
07DC 

00 
07DD 

00 
07DE 

00 
07DF 

5760 ♦TTYOUT OUTPUTS BATA FROM THE SPECIFIED 
5770 *USERS BUFFER TO THE UART♦ THE NUMBER OF 
5780 *USER SPECIFIED CHARACTES ARE OUTPUT 
5790 *AND CONTROL RETURNED TO THE USER 

039E 5800 ♦ 
039E 2A FB 07 5810 TTYOUT LD HLf(TTYOBF > ♦GET BUFFER ADDRESS 
03A1 3A FE 07 5820 LD Af(TTYQC) ♦GET NUMBER OF CHARACTERS 
03A4 47 5830 LD Bf A 
03A5 OE 00 5840 TTY0U1 LD CfZERO 
03A7 11 00 00 5850 LD DEf ZERO 
03AA DB 03 5860 TTY01 IN UARTST ♦GET STATUS 
03AC CB 47 5870 BIT Of A 
03AE CA BC 03 5880 JP ZfTTY0U2 ♦JUMP IF BUFFER NOT EMPTY 
03B1 7E 5890 LD Af(HL) ♦GET CHARACTER 
03B2 D3 02 5900 OUT UARTIO ♦OUTPUT CHARACTER 
03B4 05 5910 DEC B 
03B5 3E 00 5920 LD A f ZERO 
03B7 C8 5930 RET Z ♦RETURN IF BUFFER EMPTY 
03B8 23 5931 INC HL 
03B9 C3 A5 03 5940 JP TTY0U1 
03BC 13 5950 TTY0U2 INC DE ♦TRY AGAIN DELAY 
03BD 7B 5960 LD ArE 
03BE FE 00 5970 CP ZERO 
03C0 C2 BC 03 5980 JP NZ ? TTY0U2 
03C3 7A 5990 LD A r D 
03C4 FE 00 6000 CP ZERO 
03C6 C2 BC 03 6010 JP NZ f TTY0U2 
03C9 OC 6020 INC C 
03CA FE 05 6030 CP FIYE 
03CC C2 AA 03 6040 JP NZfTTYOI ♦JUMP IF .LT.5 TRYS 
03CF 3E 01 6050 LD AfONE ♦ELSE RETURN WITH A=1 
03D1 C9 6060 RET 
03D2 6070 ♦ 
07C4 6080 ST 7C4H 
07C4 6090 ♦ 

6100 
6110 
6120 

♦PAGE 
♦SAVE 
♦ 

2 CONSTANSfJUMP AREAS»AND REGISTER 
AREAS 

07C4 6130 SPSTRT DB 0 ♦STACK ; AREA 
00 

07C5 6140 ♦ 
07C5 6150 ♦ USER RESTART AREA 
07C5 6160 ♦ 
07C5 6170 RST2Y DS 3 ♦ USER BRANCH AREA FOR RST 2 
07C8 6180 RST3V DS 3 ♦USER BRANCH AREA FOR RST 3 
07CB 6190 RST4Y DS 3 ♦ USER BRANCH AREA FOR RST 4 
07CE 6200 RST5Y DS 3 ♦ USER BRANCH AREA FOR RST 5 
07D1 6210 RST6Y DS 3 ♦USER BRANCH AREA FOR RST 6 
07D4 6220 RST7Y DS 3 ♦USER BRANCH AREA FOR RST 7 

6230 
6240 
6250 
6260 

♦REGISTER SAVE AREA 
♦ 
IXLSAY DB 

6270 IXHSAY DB 

6280 IYLSAY DB 

6290 IYHSAY DB 

6300 SPLSAY DB 

6310 SPHSAY DB 

6320 PCLSAY DB 

6330 PCHSAY DB 

0 

0 

6340 ISAY DB 
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00 
07E0 6350 RSAV DB 0 

00 
07E1 6360 LSAV DB 0 

00 
07E2 6370 HSAV DB 0 

00 
07E3 6380 ASAV DB 0 

00 
07E4 6390 BSAU DB 0 

00 
07E5 6400 CSAV DB 0 

00 
07E6 6410 DSAU DB 0 

00 
07E7 6420 ESAV DB 0 

00 
07E8 6430 FSAV DB 0 

00 
07E9 6440 ALSAU DB 0 

00 
07EA 6450 AHSAU DB 0 

00 
07EB 6460 AASAU DB 0 

00 
07EC 6470 ABSAV DB 0 

00 
07ED 6480 ACSAU DB 0 

00 
07EE 6490 ADSAU DB 0 

00 
07EF 6500 AESAU DB 0 

00 
07F0 6510 AFSAU DB 0 

00 
07F1 
07F1 

6520 
6530 

* 
♦BATA STORAGE AREA 

07F1 
07F1 

6540 
6550 

* 
KFLAGS DB 0 ♦KEYBOARD FLAGS 

00 
07F2 6560 KDATA1 DB 0 ♦KEYBOARD INPUT BUFFER 

00 
07F3 6570 KDATA2 DB 0 

00 
07F4 6580 TEMP DB 0 

00 
07F5 6581 TEMP2 DB 0 

00 
07F6 6590 MBASE1 DB 0 ♦BASE MEMORY ADDRESS 

00 
07F7 6600 MBASE2 DB 0 

00 
07F8 6610 REGINX DB 0 ♦REGISTER INDEX 

00 
07F9 6620 TTYIBF DS 2 ♦TTY INPUT BUFFER ADDRESS 
07FB 6630 TTYOBF DS 2 ♦TTYOUTPUT BUFFER ADDRESS 
07FD 6640 TTYIC DB 0 ♦TTY INPUT CHARACTER COUNT 

00 
07FE 6650 TTYOC DB 0 ♦TTY OUTPUT CHARACTER COUNT 

00 
07FF 
07FF 

6660 
6670 

* 
END 

FILE 3000 7323 
READY 
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Appendix El Electrical Specifications 
Absolute Maximum Ratings 

Temperature Under Bits 
Storage Temperature 
Voltage On Any Pin 

with Respect to Ground 
Power Dissipation 

Specified operating range. 
-65#C to ♦ I $0°C 

-0.3V to +7V 

1.5W 

•Comment 

Stresses above those listed under “Absolute 
Maximum Rating** may cause permanent 
damage to the device. This is a stress rating 
only and functional operation of the device 
at these or any other condition above those 
indicated in the operational sections of this 
specification is not implied. Exposure to 
absolute maximum rating conditions for 
extended periods may affect device reliability. 

Note: For Z80CPU all AC and DC charactcnsttcs remain the 
same for the military grade parts except lcc. 

1^- 200 mA 

Z80-CPU D.C. Characteristics 
TA * 0*C to 70°C. VtfC ■ SV t 5‘A unless otherwise specified 

Symbol Parameter Min. Typ- Max. Unit Test Condition 

VILC Clock Input Low Voltage -0.3 0.45 V 

VIHC Clock Input High Voltage 
Vcc -.6 Vcc*.3 V 

VIL 
Input Low Voltage -0.3 0.8 V 

VlH Input High Voltage 2.0 Vcc V 

V0L 
Output Low Voltage 0.4 V ,OLs,'bmA 

V0H Output High Voltage 2.4 V 'oh ‘ -250*A 

•cc Power Supply Current ISO mA 

•li Input Leakage Current 10 pA Vjn-O to Vcc 

•loh Tri-State Output Leakage Current in Float 10 pA vOUT’24,oVcc 

•lol Tii Staie Output Leakage Current in Float -10 pA vout*°4V 

!ld Dau Bus Leakage Current in Input Mode 110 pA °<V.N<V« 

Capacitance 
Ta * 25°C, f 3 1 MHz, 
unmeasured pins returned to ground 

Symbol Parameter Max. Unit 

Clock Capacitance 3S PF 

CIN Input Capacitance 5 PF 

COL'T Output Capacitance 10 PF 

Z80-CPU 
Ordering Information 
C - Ceramic 
P — Plastic 
S - Standard SV *5% 0* to 70°C 
E - Extended SV iS% -40* to 85*C 
M - Military SV tlO%-SS° to I2S*C 

Z80A-CPU D.C. Characteristics 
* 0*1* to 70*(\ Vcc ■ 5V t S*; unlow otherwise specified 

Symbol Parameter Min. Typ. Max. Unit Test Condition 

VILC Cluck lupin Low Voliage -0 3 045 V 

VIIK Clock Input High Voltage 
vcc -.6 v«o V 

VIL Input Low Voltage -0.3 OK 
• 

V 

V|»l Input High Voltage :.o v« V 

VOL Output Low Voltage 0.4 V ■ol"1 bmA 

VOII Output High Voltage 2,4 V •on * --5(*A 

'a hrwei Suppt> Cuireut 90 :oo mA 

*LI input Leakage Cut rent 10 PA V|N*°lw vcc 

'loii Tti-Siatc Output Leakage Current m Float 10 pA V0lT-2.4 l,s VvV 

■loi. Tn-Slate Output Leakage Current in Float -10 PA VOUT-0.4V 

•ld Da'a Bun Leakage Current in Input Mode 210 PA 0<VIN<Vcc 

Capacitance 
rA * 2$°C, f • I MH*. 
unmeasured pins returned to ground 

Symbul Parameter Max Unit 

( 
CI»k k l apa, name 35 pi 

<|N 
lupin Capacitance * pi- 

lon Output C apa%ilaiKc 10 pF 

Z80A-CPU 
Ordering Information 
C - Ceramic 
P - Plastic 
S - Standard SV tS* 0V to 70*C 

Reprinted by permission of Zilog, Inc. Copyright © 1977 
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A.C. Characteristics Z80-CPU 

Ta = 0°C to 70°C, Vcc = +SV t 5%, Unless Otherwise Noted. 

Signal Symbol Pm meter Mm Max Unit Tel Condition 

»c Clock Period .4 1121 jjsec 

lit iwWI| CKn.it Pulse Width. Clock High 1 HO |k| nscc 
*r 

lw(4*t.) Clock Pulse Wtdlli. ClsK.it Low ISO 2000 nscv 

‘t.f Clock Rise and Fall Time 30 nsti 

'D(AD) Address Ouipui Delay 14$ nscc 

'Ft AD) Delay lo Floal MO nsec 

Vis 
‘acm Address Stable Prior to MRF0(Memory Cycle) III nsec 

CL ■50pF 
•ac. Address Stable Pnoe to IORO RD .v WR (I/OCycle 1 ' [!! nsec 

Address Stable fions RD. WR, IQRQ or MREQ ni nscc 

Address Stable From Hl)m WR During Final Ml nsti 

'D(D» Data Output Delay 230 nsev 

'F(D) Delay to Float IXartng Write Cycle *6 nsec 

*S4» < Dl IXna Setup Time lo Rising Edge ol Clock Doing Ml Cycle 50 nsec 

°0-7 ‘S*(Dl Data Setup Time to Falling Edge of Clock During M2 to MS (30 nsec C, = 50pF 

'dem Data Stable Prior to W'K (Memo*)- Dyck) I<1 nsec 

‘dci Data Stable Prior lo WR (1,0 Cycle) tol nsec 

•cdt Data Stable From WR 1*1 

'H Any Hold Time for Setup Time 0 nsei 

'DL$(MR> m'kFO Delay Fiom Falling Edge ol Cluii. MRE6 Low too n>cc 

vmrs 
'DH4» (MR) MKfcO May From Rising Edge of Clock. MREQ High 100 nsec 

«DH4»(MR) MREQ DLy From Falling Edge of Ckxk. MK£'J High l6() nsec C. -50pF 

'w(MRL) Pulse Width. MREO Low 181 nsec 

‘wfMRH) Pulse Width. mRE(5 High 191 nsec 

'DO (IR) 16ft<5 Dtby Fiom Rising Edge of Clock. i(!)R<5 Low 90 nsec 

R5W3 ‘DLi(IR) IORO DeLy From Falling Edge of Clock. IORO Low TTCT nscc 
CL * 50pF 

‘DH$ (IR> I6r6 DeLy From Rising Edge of Clock. IORO High H55 nsec 

'DH4> (IR) I0RQ Delay From Falling Edge of Clock. IORO High 110 nsec 

‘DL1* (RD) RD DeLy From Rasing Edge of Clock. RD Low 

RD Dtby From Falling Edge of Clock. RD Low 

100 nsec 

RD ‘Dl$(RD) 130 nsec 
CL-50pF 

'DHO(RD) RD DeLy From Rating Edge of Clock. RD High TTO nsec 

‘DH^(RD) RD DeLy From Falling Edge of Clock. RD High no nsec 

‘Dl«>(WR) WR DeLy From Rasing Edge of Clock. W R Low 80 nsec 

m. ‘DL«b(WTt) WR Delay From Falling Edge of Clock. WR Low ~w nsec 
CL*50pF 

«DH*(WR) 

‘w(WRu 

Wr Delay From Falling Edge of Clock. WR High 100 nsec 
Pulse WSdth. WR Low HO) nsec 

RT 'DL(MI) Ml Delay From Rising Edge of Oock. Ml Low 130 nsec 
CL- 50pF 

Wl Delay From Rising Edge of Clock. Ml High 130 nscc 

EFsB «DL(RF) RFSH Delay From Rising Edge of Clock. RFSH Low 180 nsec P- 5CAnC 
'DH(RF) RFSH DeLy From Rasing Edge of Otxk. RFSH High 150 nsec 

vi BJUpr 

WAIT ‘s (WT) WAIT Setup Time to Falling Edge of Clock 7° nsec 

HALT 'D(HT) HALT Delay Time From Falling Edge of Clock 300 nsec CL = SOpF 

iNT '* (IT) IFT Setup Tim* to Raung Edge of Cluck 80 nsec 

nmT •w(NMU Pulse Width. NMi Low 80 nsec 

BUSRQ l»(B0> 8USRQ Setup Time to Rasing Edge of Clock 80 nsec 

BUSAK 'DL(BA) BL'SAK Delay From Rasing Edge of Oock. BUSAK Low 120 nsec * <AaF 
'DH(BA) BUSaK Delay From Failing Edge of Clock. BUSAK High no nscc 

v L Jvpr 

reset 's(RS) RESET Setup Time to Rising Edge of Clock 00 nsec 

«F(C) DeLy to Float (MREQ. IOKQ. RDand WR) 100 nscc 

lrru Ml Stable Ptiue to IORO (Interrupt Ack.) (111 nsec 

NOUS 

A Data thould Kr enabled onto the CPU data bu\ when RD is active During interrupt acknowledge data 
should be enabled when Ml and IOKQ aie both active 

B All ctininil wpuk are internally yynrfttunucd. wr they may be toiaily asynchronous with roped 
in i lie cluck 

C". The RESET signal must be act me tor a minimum of 3 clock cycles. 
D Output Delay vs. Loaded Capacitance 

TA * 70*C Vsv-*5Vi5-f 

Add lOnsec delay for each SOpf increase in load up to a maximum of 200pf for the data bus it lOOpf for 
address & control lines 

h Although'lane by dolpv testing guarantees of -00 »asec maximum 

vMota mi 

(I2| 'c'Wl^WLl^r^f 

‘acm * 'wf4M) • *fm 75 

|2| «acl-»c-«0 

<31 ’ca-'wmi^r-40 

caf",wfd.L)4‘r-t)0 

don "V 2,0 

dd * *w(«>L) + *r “ 2,0 

‘cdf * !w<4>L) * *r -80 

l«l 

|S| 

W 

PI 

I81 *w IMRL) * *e " ^O 

l9l ‘MMRHl’SMtH^'f-30 

l,0« *WWRl.) tc-40 

I**! ,m.':,cM^H)*'r80 

*,*a»«n 

Load circuit for Output 
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A.C. Characteristics Z80A-CPU 

Ta = 0°C to 70°C. Vcc = +5V ± S%. Unless Otherwise Noted. 

Signal Symbol Parameter Min Mu Unit Test Condition 

•c Dock Period .25 112) Jffft 

<b tw (♦H) Dock Pulse Width, Dock High NO IM nice 
tw ($L) Dock Pulse Width. Dock Low no 2000 nice 

‘r.f Clock Rise and Fall Time <0 mcc 

‘D(AD) Address Output Delay no nice 

'F(AD) Delay to Float nice 

Vi 5 
'kid Address Stable Pnor to MREO (Memory Cycle) 111 nice 

f\ a CAmC 

‘ad Addrcu Subfc Prux to \6WQ. RD or WR (I/O Cycle) 
Addrcu Subic from RD. \VTR. T6KQ or WFEO mm 

IJI nice 
*ca "nr nice 

W Address Stable From RD or WR During Float (4J nice 

‘0(D) Data Output Delay ISO rucv 

'F(D) Delay to Float During Write Cycle 90 nitv 

Po-7 
«S* (D) 
'S*(D) 

Dau Setup Time to Rising Edge of Dock During Ml Cyde 55 nifv 
Data Setup Time to Falling Edge of Clock During M2 to M5 50 nice C, * 50pF 

'dcra Dau Stable Pnor to WR (Memoty Cycle) (51 nice 

‘dci Data Stable Prior to WR (I/O Cycle) (6) n \€k 

‘cdf Data Stable From WR PI 

Any Hold Time fot Setup Time 0 nice 

»DL*(MR) MREO Delay From Falling Edge of Clock. MREO Low 85 nice 

MREO 
'DH4» (MR) 
‘DH4»(MR) 

MREO Delay From Rising Edge of Clock. Hr£§ High 85 nice 
MfcEO Delay From Faflmg Edge of Clock. MREO High 85 nice C. « SOpF 

k 
*w(RRE) Pulse Width. HR03 Low mi nice 

‘wfHfifl) Pulse Width. MR 1.0 High 191 nice 

*DL«b(IR) IORO Delay From Rising Edge of Dock, iORQ Low 75 nice 

(OrO 'DLO(IR) 16RQ Delay From Falling Edge of Clock. IORQ Low 85 nice 

'DHt(IR) IORQ Delay From Rising Edge of Clock. IORQ High 
T0R5 Delay From Falling Edge of Dock. IORO High 

85 nice 
Vi jwpr 

*DH4> (IR) 85 nice 

lDL* (RD) RD Delay From Rising Edge of Dock. RD Low 85 nice 

RB ‘DL$ (RD) RD Delay From Falling Edge of Clock. RD Low 95 nice 
CL ■50pF 

*DH$(RD) 
‘DH$ (RD) 

RD Delay From Rising Edge of Clock. RD High ' 85 nice 
RD Delay From Falling Edge of Dock. RD High 85 nsec 

‘DLt (WR) WR Delay From Rising Edge of Dock. WR Low 65 nice 

WR 'DL$ (WR) WR Delay From Falling Edge of Dock. WR Low 80 nice 
CL-50pF 

«DH*(WR) Wft Delay From Falling Edge of Clock. WR High 80 nice 

•w(wRl) Pulse Width. WR Low no! nice 

WT ‘DL (Ml) M1 Delay From Rising Edge of Dock, M1 Low 100 nice 
CL»50PF 

‘DH (Ml) HI Delay From Rising Edge of Dock. HI High 100 nice 

KF5H ‘DL(RF) RFSH Delay From Riling Edge of Dock. RFSH Low 130 nice 
CL-50pF 

*DH(RF) RFSH Delay From Ruing Edge of Clock. RFSH High 120 nice 

WaT? «s(WO WAIT Setup Time to Falling Edge of Dock 70 nice 

RaET »D(HT) HALT Delay Time From Falling Edge of Dock 300 n icc CL • SOpF 

InT *» (IT) iRT Setup Time to Rising Edge of Dock 80 nice 

NMl •w (NML) Pulse Width. NMl Low 80 nice 

8D5RO *s(B0) BUSRQ Setup Time to Rising Edge of Dock 50 ! nsec 

BUSaK ‘DL(BA) 
‘DH(BA) 

6USAK Delay From Rising Edge of Clock. BUSAK Low 100 mcc r v(hop 

&li$AK Delay From Falling Edge of Dock. BUSaK High 100 nice 

RESET •s(RS) ktSff Setup Time to Rising Edge of Dock 60 mcc 

*F(C) Delay to Roat (MKEQ. IORQ. RD and W R) I 80 mcc 

‘mr Ml Stable Prior to IORQ (interrupt Ack.) MM nice 

t'*l 'c■ '.(♦«) * 'w(*L)♦ ♦ 'r 

I'l '.cm 

|2) Ijd • tc -70 

IJ1 'c ■ V*L) ♦ *1 - 50 

{*] ‘caf"V<^L)*,r"4S 

W ‘dcm^c-170 

,6J tdd"tw(*L)'f tT“170 

,7J *cdf “ 1*<$L) ♦ lr * 70 

I®1 ‘w(MRL)- ‘c-30 

M ‘mmRm) “ **<♦»!) ♦ ‘f ’ 20 

l'°l VWRL) ■ 'c -30 

l"l V2'= 65 

NOTES: 

A. Data should be enabled onto the CPU data bus when RD a active. During mtemipt acknowledge dau 
should be enabled whcnHT and iOftQ are both active. 

B. All control signals art internally synchioruzed. »o they may be totally asynchronous with respect 
to the clock. 

C. The RESET signal must be active foe a minimum of 3 clock cycles. 
D. Output Delay vs. Loaded Capacitance 

TA - 70‘C Vcc - *5V 15% 
Add lOnsec delay for each 50pf increase in load up to maximum of 200pf for data bus and lOOpf for 
address & control lines. 

E. Although suttc by design, testing guarantees t^^j^ of 200 iitec maximum 
Load circuit for Output 
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Appendix E2 CPU Timing 

The Z-80 CPU executes instructions by stepping through a very precise set of a few basic operations. 
These include: 

Memory read or write 

I/O device read or write 

Interrupt acknowledge 

All instructions are merely a series of these basic operations. Each of these basic operations can take from 
three to six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of 
external devices. The basic clock periods are referred to as T cycles and the basic operations arc referred to 
as M (for machine) cycles. Figure 0 illustrates how a typical instruction will be merely a series of 
specific M and T cycles. Notice that this instruction consists of three machine cycles (Ml, M2 and M3). The 
first machine cycle of any instruction is a fetch cycle which is four, five or six T cycles long (unless length¬ 
ened by the wait signal which will be fully described in the next section). The fetch cycle (Ml) is used to 
fetch the OP code of the next instruction to be executed. Subsequent machine cycles move data between 
the CPU and memory or I/O devices and they may have anywhere from three to five T cycles (again they 
may be lengthened by wait states to synchronize the external devices to the CPU). The following para¬ 
graphs describe the timing which occurs within any of the basic machine cycles. 

BASIC CPU TIMING EXAMPLE 
FIGURE 0 

All CPU timing can be broken down into a few very simple timing diagrams as shown in figure 1 
through 7. These diagrams show the following basic operations with and without wait states (wait states 
are added to synchronize the CPU to slow memory or I/O devices). 

1. Instruction OP code fetch (M1 cycle) 

2. Memory data read or write cycles 

3. I/O read or write cycles 

4. Bus Request/Acknowledge Cycle 

5. Interrupt Request/Acknowledge Cycle 

6. Non maskable Interrupt Re quest/Acknowledge Cycle 

7. Exit from a HALT instruction 

Reprinted by permission of Zilog, Inc. Copyright © 1977 

APPENDIX E 313 

Copyrighted material 



INSTRUCTION FETCH 

Figure 1 shows the timing during an Ml cycle (OP code fetch). Notice that the PC is placed on the 
address bus at the beginning of the Ml cycle. One half clock time later the MREQ signal goes active. At this 
time the address to the memory has had time to stabilize so that the falling edge of MREQ can be used 
directly as a chip enable clock to dynamic memories. The RD line also goes active to indicate that the 
memory read data should be enabled onto the CPU data bus. The CPU samples the data from the memory on 
the data bus with the rising edge of the clock of state T3 and this same edge is used by the CPU to turn off 
the RD and MRQ signals. Thus the data has already been sampled by the CPU before the RD signal becomes 
inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memories. (The CPU uses this 
time to decode and execute the fetched instruction so that no other operation could be performed at this 
time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the RFSH 
signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished. Notice 
that a RD signal is not generated during refresh time to prevent data from different memory segments from 
being gated onto the data bus. The MREQ signal during refresh time should be used to perform a refresh read 
of all memory elements. The refresh signal can not be used by itself since the refresh address is only guaran¬ 
teed to be stable during MREQ time. 

•1* 

Tl 

-Ml < 

T2 

:YCit- 

t3 T, 

\ \ \ \ 

AO ' A15 ” I 1 REFRESH ADOR 1 

MREQ \ J \_ 1 \ 

RD J 
••• 

WAIT 
« 

Ml 

non v nm H 

t 

rr 

1
_
1
_

 

— 

J T 

r777 \ UdU s Ut)/ “ r1 lwj / 

RFSH 1_ J 

INSTRUCTION OP CODE FETCH 
FIGURE 1 

Figure 1A illustrates how the fetch cycle is delayed if the memory activates the WAIT line. Our- 
ing T2 and every subsequent Tw, the CPU samples the WAIT line with the falling edge of <t>. If the WAIT 
line is active at this time, another wait state will be entered during the following cycle. Using this technique 
the read cycle can be lengthened to match the access time of any type of memory device. 
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A0-A15 j 

*1 T2 

-Ml C “ ycl*- 

Tw T3 

\ \ , \ \ 1 \ \ 
_1 4 PC ] REFRESH ADDR. I 

MREQ \ J \ / 

RD 

DBO “*■ DR7 

\ J 
wUW l/Wf 

Ml 

va 

_ ~ 1 

J 

l/ ■i 

WAIT \ j \ / \_ 

r RFSH A 

INSTRUCTION OP CODE FETCH WITH WAIT STATES 
FIGURE 1A 

MEMORY READ OR WRITE 

Figure 2 illustrates the timing of memory read or write cycles other than an OP code fetch (MI 
cycle). These cycles are generally three clock periods long unless w ait states are requested by the memory 
via the WAIT signal. The MRF.Q signal and the RD signal are used the same as in the fetch cycle. In the case 
of a memory write cycle, the MREQ also becomes active when the address bus is stable so that it can be 
used directly as a chip enable for dynamic memories. The WR line is active when data on the data bus is 
stable so that it can be used directly as a R/W pulse to virtually any type of semiconductor memory. 
Furthermore the W'R signal goes inactive one half T state before the address and data bus contents are 
changed so that the overlap requirements for virtually any type of semiconductor memory type will be met. 

•i* — 

AO A15 

»*-- ^ — — -UWl.tB — 1 

Tt T2 T3 Tl 

y »n uv 

t2 T3 

\ \ \ \ 
] MEMORY ADDR ’ MEMORYADDR I 

.VIREQ 
\ / \ 1 

RD \ / 

VVR 

DATA BUS _ 

1 1 
' 

DATA OUT I}- IDO •» 071 
M g M 

WAIT _ M .J L"__ ___ — _J L”I 

1 
MEMORY READ OR WRITE CYCLES 

FIGURE 2 

APPENDIX E 315 

Copyrighted material 



Figure 2A illustrates how a WAIT request signal will lengthen any memory read or write opera¬ 
tion. This operation is identical to that previously described for a fetch cycle. Notice in this figure that a 
separate read and a separate write cycle are shown in the same figure although read and write cycles can 
never occur simultaneously. 

A0-A15 

Tl 

1-\ 

Tw t3 Ti 

\ \ \ 1 i \ 
__ 

I MEMORY ADDR • t 

MREQ \ / 

RD 

DATA BUS _ 

\ /- 

1 N 
(DO - 07) 

M M 

WR 

DATA BUS 

\ 1 

1 DATA OUT "V -
1

 
1 

1 

rv 
O

 / o
 

O
 \ J 

WAIT \ f / ~~J 

}READ 
CYCLE 

l WRITE 
j CYCLE 

MEMORY READ OR WRITE CYCLES WITH WAIT STATES 
FIGURE 2A 

INPUT OR OUTPUT CYCLES 

Figure 3 illustrates an I/O read or I/O write operation. Notice that during I/O operations a single 
wait state is automatically inserted. The reason for this is that during I/O operations, the time from when 
the IORQ signal goes active until the CPU must sample the WAIT line is very short and without this extra 
state sufficient time does not exist for an I/O port to decode its address and activate the WAIT line if a wait 
is required. Also, without this wait state it is difficult to design MOS I/O devices that can operate at full 
CPU speed. During this wait state time the WAIT request signal is sampled. During a read I/O operation, 
the RD line is used to enable the addressed port onto the data bus just as in the case of a memory read. For 
I/O write operations, the WR line is used as a clock to the I/O port, again with sufficient overlap timing 
automatically provided so that the rising edge may be used as a data clock. 

Figure 3A illustrates how additional wait states may be added with the WAIT line. The operation 
is identical to that previously described. 

BUS REQUEST/ACKNOWLEDGE CYCLE 

Figure 4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is 
sampled by the CPU with the rising edge of the last clock period of any machine cycle. If the BUSRQ 
signal is active, the CPU will set its address, data and tri-state control signals to the high impedance state 
with the rising edge of the next clock pulse. At that time any external device can control the buses 10 

transfer data between memory and I/O devices. (This is generally known as Direct Memory Access [DMA] 
using cycle stealing). The maximum time for the CPU to respond to a bus request is the length of a machine 
cycle and the external controller can maintain control of the bus for as many clock cycles as is desired. 
Note, however, that if very long DMA cycles are used, and dynamic memories are being used, the external 
controller must also perform the refresh function. This situation only occurs if very large blocks of data are 
transferred under DMA control. Also note that during a bus request cycle, the CPU cannot be interrupted 
by either a NMI or an INT signal 
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AO-A7 PORT ADDRESS 

IORQ 

RD 

DATA BUS 
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Cycle 
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WR 

OATA BUS OUT 
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f Cycle 

INPUT OR OUTPUT CYCLES 
FIGURE 3 

AO - A7 PORT AODHESS 

IORQ 

DATA BUS 

RD 

WAIT 
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CYCLE 
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INPUT OR OUTPUT CYCLES WITH WAIT STATES 
FIGURE 3A 

Automatically inserted WAIT state 
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— Any m uyuf 

last T Slate 
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T* 

\ \ 1 \ 
_ _i 
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Sample-W Sjmplc 

BUSAK 1 r~ 

rn MMB MM ■ 

AO A15 D- A 
DO - D7 ' U- -1 
MREQ. RO. -1 _ - 

Floating 

* ■ 

WR. ior?5. 
RFSH 

BUS REQUEST/ACKNOWLEDGE CYCLE 
FIGURE 4 

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE 

Figure 5 illustrates the timing associated with an interrupt cycle. The interrupt signal (INT) is 
sampled by the CPU with the rising edge of the last clock at the end of any instruction. The signal will not be 

accepted if the internal CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ signal 
is active. When the signal is accepted a special M1 cycle is generated. During this special Ml cycle the 10RQ 
signal becomes active (instead of the normal MREQ) to indicate that the interrupting device can place an 
8-bit vector on the data bus. Notice that two wait states are automatically added to this cycle. These states 
are added so that a ripple priority interrupt scheme can be easily implemented. The two wait states allow 
sufficient time for the ripple signals to stabilize and identify which I/O device must insert the response 
vector. 

ItstM Cycle L_Ml 

0 _ 

of Intt ruction 

Last T State Tl t2 

- mi - 

V V T3 

\ \ \ \ \ \ 
'— 

■B MBHP MHV 4% AHAk A 
INT “ 1 

A 

A0-A15 I PC "Y REFRESH 

Ml 1 J 

MREQ 

CT< 

L_ 

IORQ 

DATA RIK -| 

J 
1 UH 1 M DUO ■ Li£ J 

WAIT Lj cl. 
RD 

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE 
FIGURE 5 
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Figures 5A and 5B illustrate how a programmable counter can be used to extend interrupt 
acknowledge time. (Configured as shown to add one wait state) 

EXTENDING INTERRUPT ACKNOWLEDGE TIME WITH WAIT STATE 
FIGURE 5A 

LAST T STATE OF 
LAST M CYCLE OF 

INSTRUCTION 

AUTOMATIC WAIT 

T„ I T 

\ 
w w 

USER WAIT 

TW 

REQUEST/ACKNOWLEDGE CYCLE WITH ONE ADDITIONAL WAIT STATE 
FIGURE 5B 
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NON MASKABLE INTERRUPT RESPONSE 

Figure 6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is 
sampled at the same time as the interrupt line, but this line has priority over the normal interrupt and it can 
not be disabled under software control. Its usual function is to provide immediate response to important 
signals such as an impending power failure. The CPU response to a non maskable interrupt is similar to a 
normal memory read operation. The only difference being that the content of the data bus is ignored while 
the processor automatically stores the PC in the external stack and jumps to location 0066u. The service 
routine for the non maskable interrupt must begin at this location if this interrupt is used. 

HALT EXIT 

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an interrupt is 
received (either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two 
interrupt lines are sampled with the rising clock edge during each T4 state as shown in figure 7. If a non 
maskable interrupt has been received or a maskable interrupt has been received and the interrupt enable 
flip-flop is set, then the halt state will be exited on the next rising clock edge. The following cycle will then 
be an interrupt acknowledge cycle corresponding to the type of interrupt that was received. If both are 
received at this time, then the non maskable one will be acknowledged since it has highest priority. The 
purpose of executing NOP instructions while in the halt state is to keep the memory refresh signals active. 
Each cycle in the halt state is a normal Ml (fetch) cycle except that the data received from the memory is 
ignored and a NOP instruction is forced internally to the CPU. The halt acknowledge signal is active during 
this time to indicate that the processor is in the halt state. 

NON MASKABLE INTERRUPT REQUEST OPERATION 
FIGURE 6 

MEMORY CYCLE FIGURE 7 
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Appendix E3 Instruction Set Summary 

Zilog 

ADC HL, ss Add with Carry Reg. pair ss to HL 

ADC A, s Add with carry operand s to Acc. 

ADD A, n Add value n to Acc. 

ADD A, r Add Reg. r to Acc. 

ADD A, (HL) Add location (HL) to Acc. 

ADD A. (IX+d) Add location (IX+d) to Acc. 

ADD A, (IY+d) Add location (IY+d) to Acc. 

ADD HL, ss Add Reg. pair ss to HL 

ADD IX, pp Add Reg. pair pp to IX 

ADD IY, rr Add Reg. pair rr to IY 

AND 5 Logical 'AND' of operand s and Acc 

BIT b, (HL) Test BIT b of location (HL) 

BIT b, (IX+d) Test BIT b of location (IX+d) 

BIT b, (IY+d) Test BIT b of location (IY+d) 

BIT b, r Test BIT b of Reg. r 

CALL cc, nn Call subroutine at location nn if 
condition cc if true 

CALL nn Unconditional call subroutine at 
location nn 

CCF Complement carry flag 

CPs Compare operand s with Acc. 

CPD Compare location (HL) and Acc. 
decrement HL and BC 

CPDR Compare location (HL) and Acc. 
decrement HL and BC, repeat 
until BC&0 

CPI Compare location (HL) and Acc. 
increment HL and decrement BC 

CPIR Compare location (HL) and Acc. 
increment HL, decrement BC 
repeat until BC=0 

Reprinted by permission of Zilog, Inc. Copyright © 1977 

CPL Complement Acc. (Vs comp) 

DAA Decimal adjust Acc. 

DEC m Decrement operand m 

DEC IX Decrement 1X 

DEC IY Decrement IY 

DECss Decrement Reg. pair ss 

Dl Disable interrupts 

DJNZe Decrement B and Jump 
relative if B/0 

El Enable interrupts 

EX (SP), HL Exchange the location (SP) and HL 

EX (SP), IX Exchange the location (SP) and IX 

EX (SP), IY Exchange the location (SP) and IY 

EX AF, AF' Exchange the contents of AF 
and AF' 

EX DE, HL Exchange the contents of DE 
and HL 

EXX Exchange the contents of BC, DE, 
HL with contents of BC', DE', HL' 
respectively 

HALT HALT (wait for interrupt or reset) 

IMO Set interrupt mode 0 

IM 1 Set interrupt mode 1 

IM 2 Set interrupt mode 2 

IN A,(n) Load the Acc. with input from 
device n 

IN r, (C) Load the Reg. r with input from 
device (C) 

INC (HL) Increment location (HL) 

INC IX Increment IX 
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INC (IX+d) Increment location (IX+d) 

INC IY Increment IY 

INC (lY+d) Increment location (lY+d) 

INC r Increment Reg. r 

INCss Increment Reg. pair ss 

IND Load location (HL) with input 
from port (C), decrement HL 
and B 

INDR Load location (HL) with input 
from port (C), decrement HL and 
decrement B, repeat until B*=0 

INI Load location (HL) with input 
from port (C); and increment HL 
and decrement B 

INIR Load location (HL) with input 
from port (C), increment HL 
and decrement B, repeat until 
B=0 

JP (HL) Unconditional Jump to (HL) 

JP (IX) Unconditional Jump to (IX) 

JP (IY) Unconditonal Jump to (1Y) 

JP cc, nn Jump to location nn if 
condition cc is true 

JP nn Unconditional jump to location 
nn 

JP C.e Jump relative to PC+e if carry-1 

JR e Unconditional Jump relative 
to PC+e 

JP NC. e Jump relative to PC+e if carry=0 

JR NZ, e Jump relative to PC+e if non 
zero (Z=0) 

JR Z.e Jump relative to PC+e if zero (Z-1) 

LD A. (BC) Load Acc. with location (BC) 

LD A, (DE) Load Acc. with location (DE) 

LD A, 1 Load Acc. with 1 

LD A, (nn) Load Acc. with location nn 

LD A, R Load Acc. with Reg. R 

LD (BC), A Load location (BC) with Acc. 

LD (DE), A Load location (DE) with Acc. 

LD (HL), n Load location (HL) with value n 

LD dd, nn Load Reg. pair dd with value nn 
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LD HL, (nn) Load HL with location (nn) 

LD (HL), r Load location (HL) with Reg. r 

LD 1, A Load 1 with Acc. 

LF IX, nn Load IX with value nn 

LD IX, (nn) Load IX with location (nn) 

LD (IX+d), n Load location (IX+d) with value n 

LD (IX+d), r Load location (IX+d) with Reg. r 

LD IY. nn Load IY with value nn 

LD IY. (nn) Load IY with location (nn) 

LD (lY+d), n Load location (lY+d) with value n 

LD (lY+d), r 

LD (nn), A 

Load location (lY+d) with Reg. r 

Load location (nn) with Acc. 

LD (nn), dd Load location (nn) with Reg. pair dd 

LD (nn), HL Load location (nn) with HL 

LD (nn). IX Load location (nn) with IX 

LD (nn), IY Load location (nn) with IY 

LD R. A Load R with Acc. 

LD r. (HL) Load Reg. r with location (HL) 

LD r, (IX+d) Load Reg. r with location (IX+d) 

LD r. (lY+d) Load Reg. r with location (lY+d) 

LDr.n Load Reg. r with value n 

LD r, r' Load Reg. r with Reg. r' 

LD SP, HL Load SP with HL 

LD SP, IX Load SP with 1X 

LD SP, IY Load SP with IY 

LDD Load location (DE) with location 
(HL), decrement DE, HL and BC 

LDDR Load location (DE) with location 
(HL), decrement DE, HL and BC; 
repeat until BC=0 

LDI Load location (DE) with location 
(HL), increment DE, HL, 
decrement BC 

LDIR Load location (DE) with location 
(HL), increment DE, HL, 
decrement BC and repeat until 
BC=0 

NEG Negate Acc. (2's complement) 

NOP No operation 
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ORs Logical 'OR* or operand s and Acc. RSTp 

OTDR Load output port (C) with location 
(HL) decrement HL and B, repeat 
until B=0 

SBC A, s 

OTIR Load output port (C) with location 
(HL), increment HL, decrement B, 
repeat until B=0 

SBC HL, ss 

SCF 
OUT (C), r Load output port (C) with Reg. r 

SET b, (HL) 
OUT (n), A Load output port (n) with Acc. 

SET b, (IX+d) OUTD Load output port (C) with location 
(HL), decrement HL and B SET b, (lY+d) 

OUTI Load output port (C) with location 
SET b, r 

(HL), increment HL and decrement 
B SLAm 

POP IX Load IX with top of stack 
SRA m 

POP IY Load IY with top of stack 
SRLm 

POP qq Load Reg. pair qq with top of stack 
SUBs 

PUSH IX Load IX onto stack 
XORs 

PUSH IY Load IY onto stack 

PUSH qq Load Reg. pair qq onto stack 

RES b, m Reset Bit b of operand m 

RET Return from subroutine 

RET cc Return from subroutine if condition 
cc is true 

RETI Return from interrupt 

RETN Return from non maskable interrupt 

RLm Rotate left through carry operand m 

RLA Rotate left Acc. through carry 

RLC(HL) Rotate location (HL) left circular 

RLC (IX+d) Rotate location (IX+d) left circular 

RLC (lY+d) Rotate location (lY+d) left circular 

RLCr Rotate Reg. r left circular 

RLC A Rotate left circular Acc. 

RLD Rotate digit left and right between 
Acc. and location (HL) 

RR m Rotate right through carry operand m 

RRA Rotate right Acc. through carry 

RRC m Rotate operand m right circular 

RRCA Rotate right circular Acc. 

RRD Rotate digit right and left between 
Acc. and location (HL) 

Restart to location p 

Subtract operand s from Acc. with 
carry 

Subtract Reg. pair ss from HL with 
carry 

Set carry flag (C=1) 

Set Bit b of location (HL) 

Set Bit b of location (IX+d) 

Set Bit b of location (lY+d) 

Set Bit b of Reg. r 

Shift operand m left arithmetic 

Shift operand m right arithmetic 

Shift operand m right logical 

Subtract operand s from Acc. 

Exclusive 'OR' operand s and Acc. 
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GLOSSARY 

Accumulator A temporary register where results of calculations may be stored by the 
central processor. One or more accumulators may be part of the arithmetic-logical 
unit. 

Acoustical coupler A device that permits a terminal to be connected to the computer 
via a telephone line. It connects to the telephone handset. 

Address An identifying number or label for locations in the memory. 

Algorithm A step-by-step solution to a problem in a finite number of steps. A specific 
procedure for accomplishing a desired result. 

ASCII American Standard Code for Information Interchange. Widely used 7-bit 
standard code. Also known as USASCI1; IBM uses EBCDIC, which has 8 bits. 

Assembler A program that converts symbolic instructions into machine macro- 
instructions. 

Backplane A board equipped with plugs interconnected by buses into which the 
modules that make up a computer may be inserted. Also known as a motherboard. 

BASIC Beginner's All-purpose Symbolic Instruction Code. Algebraic language devel¬ 
oped at Dartmouth College. The language is easy to learn and use. 

Binary A numbering system based on multiples of two using the digits 0 and 1. 

Bit Abbreviation of binary digit. A single element in a binary number—either a 0 or a 
1. Bits are represented in a microcomputer by the status of electronic switches that can 
be either on or off. Four bits equal a nibble; eight bits equal a byte. 

Byte A group of adjacent bits, usually eight bits, which is operated upon as a unit by 
the central processor. 

CMOS Complementary Metal-Oxide Semiconductor. Technology that combines the 
component density of p-channel MOS (PMOS) and the speed of n-channel MOS 
(NMOS). Power consumption is very low. 

Clock A device that generates regular pulses that synchronize events throughout a 
microcomputer. 

Central processor The central processor controls the operation of a microcomputer. 
The central processor can fetch and store data and instructions from memory. 

CRT Cathode-Ray Tube. An electronic vacuum tube that can be used for graphic dis¬ 
play. Also refers to a terminal incorporating a CRT. 

Compiler A program that translates high-level programming language into machine 
language. May produce numerous macro-instructions for each high-level instruction, 
unlike an assembler which translates item for item. When using a compiler, one cannot 
change a program without recompilation. 

Development system A microcomputer system having all the related equipment 
necessary for hardware and software development. 

Digital Pertaining to discrete integral numbers in a given base which may express all 
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the variables occurring in a problem. Represented electronically by 2 (binary) to 16 
(hexadecimal) states at the present time. Contrasts with analog, which refers to a con¬ 
tinuous range of voltage or current quantities. 

Double density Method of doubling bit density on magnetic storage mediums. 

Dynamic memory Storage of data on dynamic chips in which storage of a small 
charge indicates a bit. Because the charge leaks over time, dynamic memory must be 
periodically refreshed. 

EBCDIC IBM's 8-bit code, similar to ASCII. 

Editor A program that rearranges text. Permits the addition or deletion of symbols 
and changes of format. 

EIA-RS-232C Interface standard for data transmitted sequentially that is not syn¬ 
chronous with the central processor. 

EPROM Erasable-Progammable Read-Only Memory. A PROM that can be erased 
and reprogrammed. Some EPROMs have a quartz window over the chip; data can be 
erased by exposure to intense ultraviolet light; other EPROMs may be erased electrical¬ 

ly. 

File A set of related records treated as a unit. 

Flag A bit attached to a word for identification or for the purpose of signaling some 
condition. Typical microprocessors include carry, zero, sign, overflow and half-carry 
status flags. 

Floating-point package A set of software routines that allows some microcomputers 
to perform floating-point arithmetic without the addition of extra hardware. 

_• 

FSK Frequency Shift Keying. Technique of transforming bits into two different fre¬ 
quencies representing 0 and 1 for transmission over telephone or radio lines. The inter¬ 
face device is called a modem. 

Ground Electrical reference point of a circuit. 

Hard-copy Printed output on paper. 

Hardware The physical components, peripherals, or other equipment that make up a 
computer system. Contrast with software. 

Hexadecimal A numbering system based on multiples of 16 using the character 0 thru 
9 and A thru F. For example, OB hexadecimal equals 0000 1011 binary. One byte may 
be encoded in exactly 2 hexadecimal symbols. 

High-level language A programming language that is relatively independent of as¬ 
sembler or machine language. The grammar often resembles English and requires a 
compiler or interpreter to convert to executable code. Examples: BASIC, FORTRAN, 
COBOL, ALGOL, PL/M, APL. 

Instruction A step in a program that defines an operation together with the 
address(es) of any data needed for the operation. 

Interface A common boundary between two systems or devices. The hardware or 
software necessary to interconnect two parts of a system. 

Interrupt A break in the execution of a program usually caused by a signal from an 
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external device. 

Kansas City standard Refers to a standard for cassette tape recordings of 
EIA-RS-232C data. Eight cycles of 2400 Hz equals 1, and 4 cycles of 1200 Hz equals 0. 

Least significant bit The binary digit occupying the right-most position in a number 
or word, ie: 2° or 1. 

LIFO Last-In, First-Out. Method of accessing the most recent entry, then the next 
most recent, and so on. 

Light pen Photosensitive device that can be used to change the display on a CRT by 
generating a pulse at the point of contact. 

Machine language Sets of binary integers that may be directly executed as instruc¬ 
tions by the microcomputers without prior interpretation. 

Mass storage Floppy disks, cassettes or tapes used to store large amounts of data. 
Less accessible, but larger than main storage. 

Memory Storage device for binary information. 

Microcomputer A small computer system capable of performing a basic repertoire of 
instructions. Includes a central processor, often contained on a single chip, memory, 
I/O devices, and power supply. 

Microprocessor A central processor on a chip. A complete processor on a single chip, 
manufactured using microminiature manufacturing techniques, known as LSI (large 
scale integration). 

Modem MOdulator—DEModulator. Device that transforms binary data into fre¬ 
quencies suitable for transmission over telephone lines and back again. 

Monitor A program that controls the operation of basic routines to optimize comput¬ 
er time. 

Most significant bit The binary digit occupying the left-most position in a number or 
word, usually 27 or 128. 

Octal A numbering system based on multiples of eight using digits 0 thru 7. Now 
largely superseded by the hexadecimal system. 

Operating system Software that operates the hardware resources of a microcomput¬ 
er. The operating system may do scheduling, debugging, I/O control, accounting, 
compilation, storage assignment, and data management. 

Parity An extra bit that indicates whether a computer word has an odd or even num¬ 
ber of Is. Used to detect errors. 

Peripheral Any piece of equipment, usually an I/O device, attached to the central 
processor. 

Programmable memory Storage in which access to new information is independent 
of the address previously examined. 

Read-only memory (ROM) Storage that cannot be altered. The information is writ¬ 
ten at the time of manufacture. 

Register A memory device directly accessible by the central processor used for the 
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temporary storage of a computer word during arithmetic, logical, or input/output op¬ 
erations. 

S-100 A 100-pin bus used in the popular 8080/Z80 system. 

Software Programs that translate high-level languages into machine language, such 
as compilers, operating systems, assemblers, generators, library routines, and editors. 

Stack A technique of presenting programs sequentially. A stack is a LIFO structure 
controlled by PUSH and POP instructions. 

Tiny BASIC The BASIC programming language reduced to a simple form that per¬ 
mits integer arithmetic and some string operations. Tiny BASIC usually occupies 4 K 
or less bytes of memory. 

Three-state Capable of existing in three logical states—0 (low), 1 (high), or undefined 
(high-impedance), ie: floating. 

UART Universal Asynchronous Receiver Transmitter. A transmitter that converts 
serial to parallel and vice versa. 

Word A set of bits that occupies one storage location and is treated as a unit. May 
have any number of bits, but usually 4, 8, or 16. 

Word processor A text editor that allows the user to modify text: formats, books, let¬ 
ters, and reports. 
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INDEX 
Accumulators, 27, 33 
ADC, 51, 63 
ADD, 49, 63 
Addressing, 29, 32-33, 98, 105 

capability, 32 
high-order, 32 
low-order, 32 

AND, 34, 54 
Arithmetic and Logic Unit (ALU), 21-22.29 
ASCII, 129, 131, 134. 138. 220 
BASIC, 12L 183 
Binary-coded decimal (BCD), 31, 61, 184 
BIT, 75 
Bits: 

flag. 33 
least significant (LSB), 184 
manipulation, 32, 75 
most significant (MSB), 184 
start and stop, 139 

Branching: 
conditional, 80 
unconditional, 79 

Buffering, 98 
address bus, 99 
data bus, 100 

Buses, 22 
address, 29, 85, 98, 105.110 
architecture, 24 
buffering, 98 
control, 100 

signals, 101 
testings, 105 

data, 22. 29. 85. 100. 116 
bi-directional, 22, 100,105 

drivers, 93, 99-100 
testing, 105 

power, 98 
structures, 22 
voltage, 19 

Bytes, 32 
CALL, 82,152 
Capacitance, 14 
Capacitors, 2, S8, 97 

bypass, 14 
charging time, 5 
filter, 2, 4, 14 

ripple factor of, 4 
input, 14 
sizing, 5 
time constants of, 6 

Carry, 23 
flag, 51, 80 

Cassettes, 121, 129,145 
interface, 113, 145, 148-149 
Kansas City Standard, 146 
software, 148 

CCF, 60 

Characters, 213 
format, 214 

Chip select, 116 
Circuits: 

complexity, 21, 23 
integrated, 10, 22 
layouts, 14 
protective, 10 
reset, 97 

Clocks, 91, 209 
periods, 91 
real-time, 208 
single-stepping, 92,105 
testing, 105 

COM 8046, 220 
COM 2017, 220 
Communication, 138 

asynchronous, 139.142 
parallel and serial, 138 

software, 148 
signal levels, 142 

standard, 144 
Cooling, 17 
Control section, 22 
Controllers, intelligent, 183 
Converters: 

analog-to-digital, 184,189 
analog to pulse width, 189 
binary-ramp counter, 191 
successive approximation, 194 
3Vi-digit AC/DC, 199 

software, 205 
digital-to-analog, 184 

calibration, 188 
multiplying, 186 
R-2R, 184 
weighted-resistor, 184 

Cost, 23 
C£, 57 
CPD, 48 
CPDR, 48 
CPI, 47 
CPIR, 47 
CPL, 60 
CRT 8002, 213 
CRT 5027, 213 
Currents: 

continuous, 6 
regulator, 5 
surge, 6 

DAA, 61 
Data, 22. 33. 112. 116 

acquisition, 198. 208 
ASCII, 138 
communication, 138 
formats, 32 
high- and low-order, 33 
rates, 142, 148, 220 

DEC, 59, 65 
Decoding: 

hexadecimal, 135 
I/O, 91, 105-106,108 
memory, 91, 105-106.110 
testing. 111 

Demultiplexers, 108. 206 

Central processors (see also Microprocessors), 21-22. 27 
architecture, 27 
control, 29, 32 
registers, 27-29 
status, 33 
synchronizing, 97 
testing, 127 
timing, 92 
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DI, 62 
Diodes, 3, 5-6, 97 

bridges, 58, 16 
silicon, 3 
zener, 8,10 

Direct memory access (DMA), 99, 129 
Displays: 

cathode-ray tube (CRT), 129,138, 213 
hexadecimal, 134 
light-emitting diode (LED), 93.121, 129,134,153 
octal, 134 
video, 121. 183. 213 
visual, m 134 

DJNZ, 82 
Drivers: 

bus, $3 
display, 93 
LED, 93 

El, 62 
8080A, 24, 31, 91 
8212,1QQ 
EX, 44 
EXX, 44 
Fanout, 98 
Farads, 5 
Flags, 33 

carry (C), 51, 80 
condition, 33-34 
status, 33 
zero (Z), 75, 80 

Flip-flops, 92,132 
Frequency shift keying (FSK), 146 
Full-wave bridges (see also Rectifiers), 3, 5 
Fuses, 17 
Grounds, 15 

buses, 15 
common, 14 
references, 11 
single-point, 15 

HALT, 30, 62 
Heat sinks, 16 
HP7340,135 
IM, 62 
IN, 85,122 
INC, 58, 64 
IND, 87 
INDR, 87 
Inductance, 14 
INI, 86 
INIR, 86 
Input, 21, 85,122 

filters, 33 
Input/output, 121,129 

decoding, 91, 105 
testing. 111 

instructions, 32, 85 
ports, 98, 105,108 
read, 106 
registers, 91 
request, 30, 106 
testing, 122.127 
write, 106 

Instructions, 21 
arithmetic and logical, 31 

8-bit, 49 
general purpose, 8Q 
16-bit, 63 

bit manipulation, 32, 75 
block transfer and search, 3L 44 
call and return, 32, 82,152 

CPU control, 32, 60 
cycle, 91 
exchange, 28, 31, 44 
execution, 92 
fetch cycle, 29, 91-92 
formats, 32 
input and output, 32, 85, 88,122 
jump, 32, 78 
load, 31 

8-bit, 34 
16-bit, 39 

pop, 43 
push, 42 
restart, 152 
rotate and shift, 31, 66 
sets, 33 
single-stepping, 92 

testing, 105 
types, 31 

Interfaces: 
cassette, 145 

tuning, 149 
clock, 209 
RS-232C, 213 
serial, 129, 138.142 
3 Vi-digit AC/DC, 199 

testing, 205 
Interrupts, 30, 62, 84 

non-maskable, 30, 84 
page address, 29 

JP, 78 
JR, 79 
Kansas City Standard, 146 
Keyboards, 113. 121,129 

ASCII, 129,134 
bounce, 132 
encoders, 131-132, 220 
hexadecimal, 133 
input software, 163 

KR2376, 220 
LD, 34 
LDD, 46 
LDDR, 46 
LDI.45 
LDIR, 46 
Light-emitting diodes (LED), 93,121 

drivers, 93 
Loads, 7, 99 

TTL, 93 
Logic analyzers, 91, 93, 99 
Low-power Schottky TTL (LSTTL), 98 
Machine cycles, 29, 91 
Memory, 21, 32, 91,112 

addresses, 32, 97,110 
banks, 110,117 
contents, 34 
decoding, 91, 105,110 

testing. 111 
direct memory access (DMA), 99 
display and replace, 151,153 
dynamic, 116 
erasable-programmable read-only (EPROM), 112, 115,152 

erasers, 177 
programmers, 173 

automatic, 174 
manual, 173 

locations, 28 
map, 117 
page, 213 
programmable, 27, 110 
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random-access (RAM), 116 
read, 30, ?L 106 

cycles, 112 
read-only (ROM), 110, 112. 173 

character-generator, 213 
diode-matrix, 113 
programmable (PROM), 112 

read/write (RWM), 112,116 
refresh, 29-30,116 
request, 30,116 
slow, 92 
static, 116 
storage, 112, 12L 145 
testing. 122 
write, 30, 91, 106 

cycles, 112 
Microcomputers, 21 

construction, vii, 22, $1 
definition of, 21 
design of, 2L 22 
single-board, 163 
system, 22 

Microprocessors (see also Central processors), 21 
architecture, 21,22 
common, 24 
definition of, 22 
Z80. 24,22 

Monitors (see also Software), 113, 118, 134. 151. 173 
cold start, 151 
command recognition, 161 
execute. 151, 155,121 
keyboard input, 163 
memory display and replace, 151,153,168 
register display and replace, 151, 154. 169 
restart, 162 
serial input/output, 151, 156-157, 159 
UART diagnostic, 156 
warm start, 151-152.16Q 

Multiplexers, 22,112 
NEG, 60 
No operation (NOP), 30, 32, 61-62 
Nyquist criterion, 197 
Operands, 35 
Operating systems, 151 
Operation code, 29 
OR, 34, 55 
Oscilloscopes, 91, 93 
OTDR, 90 
OTIR, 89 
OUT. 88. 122 
OUTD.89 
OUT1.88 
Output, 22. 88, 122 
Overflow, 28 
Overvoltage protectors, 12 
Parity, 28 
Pascal, 183 
Peak inverse voltages (PIV), 4 
Peripherals. 121, 129,151 

synchronizing, 130 
POP, 43 
Ports, 33. 85. o8. 105.108 

hexadecimal output, 136 
octal. 136 
parallel and serial, 129,183 

Power dissipation, 4,15 
Power supplies, 1,15 

DC, 1 
Printed-circuit boards, 21 
Programs: 

debugging, 153 
development, 153 

PUSH, 42 
Rectifiers (see also Full-wave bridges), 6,14 

bridge, 2, 5,16 
full-wave, 3, 5 

silicon-controlled (SCR), 18-19 
Refresh, 29-30.116 
Registers, 27-28 

accumulator (A), 27-28, 33 
contents, 34 
display and replace, 15L 154 
8-bit (B, C, D, E, H, L), 27,112 
flag (F), 27-28, 33 
general purpose, 28 
index (IX, IY), 29 
instruction, 29 
interrupt page address (I), 29 
main and alternate, 28-29 
memory refresh (R), 29 
pairs, 28. 33. 39 
program counter (PC), 28, 32, 78, 82,152 
sets. 27-28 
16-bit (BC. DE, HL), 22 
special purpose, 28 
stack pointers (SP), 28, 42,152 

Regulators, voltage (see Voltages, regulators) 
Requests, 106 

input/output, 106 
memory, 106 
read, 106 
write, 106 

RES. 28 
Resets, 62, 97,152 

automatic, 92 
manual, 92 
testing, 105,122 

Resistance, 4, 6,15 
series, 6, 8 
thermal, 16 

Resistors, 19,185 
ladder, 185 
variable, 8 

Resolution, 184. 187. 198 
RET, 83 
RETI, 84 
RETN, 84 
Ripple factor, 4 
RL, 68 
RI.A, 66 
RLC, 62 
RLCA, 66 
RLD, 74 
RR, 20 
RRA, 66 
RRC, 69 
RRCA, 66 
RRD, 25 
RS-232C, 144, 213 
RST, 84,152 
Sample rates, 194,192 
SBC, 53, 64 
SCF, 60 
SET, 76 
78H05, 10, 16 
7812, 12 
7912, 12 
Short-circuits, 18 
Sign. 28 
Sine waves, 3 
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6800.24 
6502.24 
SLA, 71 

busing and control logic, 51 
pinout, 29 

Software (see also Monitors), 24 
Z80 Applications Processor (ZAP), vii, 1, 51 

testing, 123,12Z 
monitor, 151 
single-stepping, 52 

Zero, 28 
flag, 75, 80 

SRA, 72 
SRL, 23 
Stocks, 28, 32, 42, 82,152 
Strobes: 

data-ready, 130 
duration, 132 
key-pressed, 139 

SUB, 52 
Subroutines, 28, 82,118 
Surge currents, 6 
Terminals, 213 
Testing: 

dynamic, 127 
static, 123 

Thermal considerations, 15 
Timers, 130 
Transformers. 1, 6 

primary input to, 3 
secondary output from, 3-4 

Transistor-transistor logic (TTL), 93, 98,217 
levels, 142 
loads, 53 
low-power Schottky (LSTTL), 98, 217 
outputs, 138,146 

Transistors, 8,17 
FAMOS, 115,173 
series-pass, 10 
wide-band, 14 

2114,117 
2102A, 117 
2708, 113, 173 
2716, 113,173 
Universal synchronous receiver/transmitter (UART), 139, 220 

diagnostic, 156 
output, 146 
pinout, 139 

Voltages: 
alternating current, 1 
comparators, 7-8 
control element, 7 
direct current (DC), 1 
drops, 3, 6, 11,14 
input and output, 7,14 
loads, 5 
peak, 4,15 
peak inverse (PIV), 6 
reference, 7,10 
regulators, 1, 3-4, 7, 10, 16 

choosing, 10 
overloads, 10 
series, 8 
three-terminal, 9-10 

ripple, 45,14 
root mean square (RMS), 3, 6 
sine waves, 2 
transients, 6 
translators, 7-8 
VAC, L 3 
waveforms, 3-4 

Voltmeters, 93, 184,199 
Waits, 30, 52 
XOR, 56 
Z80, 24,27 

bus structure, 25 
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BY THE SAME AUTHOR 

CIARCIA'S CIRCUIT CELLAR 

1979, 128 pages 

This volume provides a wealth of imaginative and practical microcomputer projects. Selected from 

the popular series in BYTE magazine, topics included D/A conversion, programming EPROMS. AC 
remote-controlled appliances, digitized speech, and touch input video display. 

CIARCIA'S CIRCUIT CELLAR, VOLUME II 

1981, 224 pages 

Presented in the same easy-going style and sprinkled with amusing anecdotes, this second volume 

offers more practical uses for the home computer. Focused on how microcomputers can be uniquely 

interfaced to our environment, projects cover building a computer-controlled home security system, 
computerizing appliances, transmitting digital information over a beam of light, building the Intel 

8086 microprocessor system design kit, and input/output expansion for the TRS-80. 

ALSO FROM BYTE BOOKS 

THREADED INTERPRETIVE LANGUAGES 

Ronald Loeliger, Senior Analyst with Intermetrics, Inc. 

1981, 272 pages 

This text on threaded languages (such as FORTH) develops an interactive, extensible language with 

specific routines for the Zilog Z80 microprocessor. 

BEGINNER'S GUIDE FOR THE UCSD PASCAL SYSTEM 

Kenneth L Bowles, Director of the Institute for Information Systems, University of California, 

San Diego 
1980. 204 pages 

Written by the originator of the UCSD Pascal System for users of microcomputers and minicom¬ 

puters, this book is both an orientation guide to the System and an invaluable reference tool for 

creating advanced applications. 

THE BYTE BOOK OF PASCAL 

Blaise W Liffick, Editor 

1980, 334 pages 

Written for both potential and experienced computer users, this valuable software resource in¬ 
troduces the Pascal language and examines its merits and possible implementations. 
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Build Your Own Z80 Computer: 
Design Guidelines and Application Notes 

“There is a major need for a book such as this. The information is not readily 
available elsewhere. Or anywhere. There are dozens (hundreds?) of microprocessor 
books, but nearly all deal with software and treat hardware as abstractions or block 
diagrams. Garcia's book is literally filled with very useful and practical “hands-on" 
hardware advice, tips and techniques....The book will do for the reader what no 
other microprocessor book or manufacturer’s literature I know of does: It will 
enable a person to actually buy individual parts and assemble them into a working 
microcomputer—with peripherals and options! That’s very important. Too bad we 
couldn’t have had such a book years ago.” 

—Forrest Mims, III 
Contributing Editor of POPULAR ELECTRONICS 

“To my knowledge the material covered in this book is not available elsewhere. 
There is sufficient detail to enable an individual with previous experience to assemble 
a working Z80-based microcomputer from the component level. The design trade¬ 
offs, the circuits, the software, and the test circuits and procedures are discussed at 
a level sufficient for the book to have educational value even if one did not actually 
construct a Z80-based system.*' 

—Joseph Nichols 
Digital Analysis Corporation 

About the Author 
Steve is a computer consultant, electrical engineer, author of BYTE magazine’s most popular column. 

“Garcia's Circuit Cellar.“ and a “national technological treasure.” 

ISBN 0-07-010962-1 
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